These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9928333)

  • 21. Probing diversity within subpopulations of locomotor-related V0 interneurons.
    Griener A; Zhang W; Kao H; Wagner C; Gosgnach S
    Dev Neurobiol; 2015 Nov; 75(11):1189-203. PubMed ID: 25649879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cervical interneurones oligosynaptically excited from primary afferents and rhythmically active during forelimb fictive locomotion in the cat.
    Hishinuma M; Yamaguchi T
    Neurosci Lett; 1990 Apr; 111(3):287-91. PubMed ID: 2336204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of spinal neurons activated during locomotion using the c-fos immunohistochemical method.
    Dai X; Noga BR; Douglas JR; Jordan LM
    J Neurophysiol; 2005 Jun; 93(6):3442-52. PubMed ID: 15634712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity of cervical neurons during forelimb fictive locomotion in decerebrate cats.
    Yamaguchi T
    Jpn J Physiol; 1992; 42(3):501-14. PubMed ID: 1434107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recurrent inhibition from motor axon collatersls in interneurones monosynaptically activated rom la afferents.
    Hultborn H; Jankowska E; Lindström S
    Brain Res; 1968 Jul; 9(2):367-9. PubMed ID: 5679833
    [No Abstract]   [Full Text] [Related]  

  • 27. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.
    Griener A; Zhang W; Kao H; Haque F; Gosgnach S
    Neuroscience; 2017 Oct; 362():47-59. PubMed ID: 28844009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity of medullary reticulospinal neurons during fictive locomotion.
    Perreault MC; Drew T; Rossignol S
    J Neurophysiol; 1993 Jun; 69(6):2232-47. PubMed ID: 8350141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convergence from Lb, cutaneous and joint afferents in reflex pathways to motoneurones.
    Lundberg A; Malmgren K; Schomburg ED
    Brain Res; 1975 Apr; 87(1):81-4. PubMed ID: 1120258
    [No Abstract]   [Full Text] [Related]  

  • 30. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
    Gosgnach S; Bikoff JB; Dougherty KJ; El Manira A; Lanuza GM; Zhang Y
    J Neurosci; 2017 Nov; 37(45):10835-10841. PubMed ID: 29118212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Group I disynaptic excitation of cat hindlimb flexor and bifunctional motoneurones during fictive locomotion.
    Quevedo J; Fedirchuk B; Gosgnach S; McCrea DA
    J Physiol; 2000 Jun; 525 Pt 2(Pt 2):549-64. PubMed ID: 10835053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cutaneous reflex activity of the cat forelimb during fictive locomotion.
    Seki K; Yamaguchi T
    Brain Res; 1997 Apr; 753(1):56-62. PubMed ID: 9125431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinal circuitry of sensorimotor control of locomotion.
    McCrea DA
    J Physiol; 2001 May; 533(Pt 1):41-50. PubMed ID: 11351011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP
    J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology, and function.
    Buchanan JT; Grillner S; Cullheim S; Risling M
    J Neurophysiol; 1989 Jul; 62(1):59-69. PubMed ID: 2754481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons.
    Burke RE
    Exp Brain Res; 1999 Oct; 128(3):263-77. PubMed ID: 10501799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excitation of Renshaw cells via motor neuron collaterals in acute and chronic spinal cats.
    Goldfarb J
    Brain Res; 1976 Apr; 106(1):176-83. PubMed ID: 1063597
    [No Abstract]   [Full Text] [Related]  

  • 38. [Modulation of Renshaw cell activity during scratching].
    Deliagina TG; Fel'dman AG
    Neirofiziologiia; 1978; 10(2):210-1. PubMed ID: 652104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The spinal locomotor generator.
    Miller S; Scott PD
    Exp Brain Res; 1977 Nov; 30(2-3):387-403. PubMed ID: 598435
    [No Abstract]   [Full Text] [Related]  

  • 40. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.
    Dougherty KJ; Zagoraiou L; Satoh D; Rozani I; Doobar S; Arber S; Jessell TM; Kiehn O
    Neuron; 2013 Nov; 80(4):920-33. PubMed ID: 24267650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.