These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9928337)

  • 1. Segmental afferent regulation of hindlimb wiping in the spinal frog.
    Kargo WJ; Davies MR; Giszter SF
    Ann N Y Acad Sci; 1998 Nov; 860():456-7. PubMed ID: 9928337
    [No Abstract]   [Full Text] [Related]  

  • 2. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.
    Kargo WJ; Giszter SF
    J Neurophysiol; 2000 Mar; 83(3):1480-501. PubMed ID: 10712474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinations of locomotor and respiratory rhythms in vitro are critically dependent on hindlimb sensory inputs.
    Morin D; Viala D
    J Neurosci; 2002 Jun; 22(11):4756-65. PubMed ID: 12040083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid correction of aimed movements by summation of force-field primitives.
    Kargo WJ; Giszter SF
    J Neurosci; 2000 Jan; 20(1):409-26. PubMed ID: 10627617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral integration of sensorimotor signals during pedaling.
    Ting LH; Kautz SA; Brown DA; Van der Loos HF; Zajac FE
    Ann N Y Acad Sci; 1998 Nov; 860():513-6. PubMed ID: 9928350
    [No Abstract]   [Full Text] [Related]  

  • 6. Muscle proprioceptive feedback and spinal networks.
    Windhorst U
    Brain Res Bull; 2007 Jul; 73(4-6):155-202. PubMed ID: 17562384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic musculoskeletal properties stabilize wiping movements in the spinalized frog.
    Richardson AG; Slotine JJ; Bizzi E; Tresch MC
    J Neurosci; 2005 Mar; 25(12):3181-91. PubMed ID: 15788775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple experimentally based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs.
    Kargo WJ; Ramakrishnan A; Hart CB; Rome LC; Giszter SF
    J Neurophysiol; 2010 Jan; 103(1):573-90. PubMed ID: 19657082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord.
    Rudomin P; Lomelí J; Quevedo J
    Exp Brain Res; 2004 Jun; 156(3):377-91. PubMed ID: 14985894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The modulation of locomotor speed is maintained following partial denervation of ankle extensors in spinal cats.
    Harnie J; Côté-Sarrazin C; Hurteau MF; Desrochers E; Doelman A; Amhis N; Frigon A
    J Neurophysiol; 2018 Sep; 120(3):1274-1285. PubMed ID: 29897865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of spinal reflex pathways from muscle afferents to motoneurones in chick embryos devoid of descending inputs.
    Ozaki S; Kudo N
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):137-46. PubMed ID: 7853217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New observations on input to spino-cervical tract neurons from muscle afferents.
    Hammar I; Läckberg ZS; Jankowska E
    Exp Brain Res; 1994; 100(1):1-6. PubMed ID: 7813638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of nucleus Z neurons to sinusoidal stretch of hindlimb extensor muscles.
    Magherini PC; Pompeiano O; Seguin JJ
    Brain Res; 1974 Jun; 73(2):343-9. PubMed ID: 4275421
    [No Abstract]   [Full Text] [Related]  

  • 14. Rapid spinal mechanisms of motor coordination.
    Nichols TR; Cope TC; Abelew TA
    Exerc Sport Sci Rev; 1999; 27():255-84. PubMed ID: 10791019
    [No Abstract]   [Full Text] [Related]  

  • 15. Neuronal pathways from group-I and -II muscle afferents innervating hindlimb muscles to motoneurons innervating trunk muscles in low-spinal cats.
    Wada N; Kanda K
    Exp Brain Res; 2001 Jan; 136(2):263-8. PubMed ID: 11206289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of hindlimb muscle afferents involved in ventilatory effects observed in decerebrate and spinal preparations.
    Persegol L; Palisses R; Viala D
    Exp Brain Res; 1993; 92(3):495-501. PubMed ID: 8454012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teaching the spinal cord to walk.
    Wickelgren I
    Science; 1998 Jan; 279(5349):319-21. PubMed ID: 9454324
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional organization of the spinal reflex pathways from forelimb afferents to hindlimb motoneurones in the cat.
    Schomburg ED; Meinck HM; Haustein J; Roesler J
    Brain Res; 1978 Jan; 139(1):21-33. PubMed ID: 202374
    [No Abstract]   [Full Text] [Related]  

  • 19. Clinical relevance of the putative C-3-4 propriospinal system in humans.
    Burke D
    Muscle Nerve; 2001 Nov; 24(11):1437-9. PubMed ID: 11745944
    [No Abstract]   [Full Text] [Related]  

  • 20. Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat.
    Abelew TA; Miller MD; Cope TC; Nichols TR
    J Neurophysiol; 2000 Nov; 84(5):2709-14. PubMed ID: 11068014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.