These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 9928588)
1. Laboratory values improve predictions of hospital mortality. Pine M; Jones B; Lou YB Int J Qual Health Care; 1998 Dec; 10(6):491-501. PubMed ID: 9928588 [TBL] [Abstract][Full Text] [Related]
2. Predictions of hospital mortality rates: a comparison of data sources. Pine M; Norusis M; Jones B; Rosenthal GE Ann Intern Med; 1997 Mar; 126(5):347-54. PubMed ID: 9054278 [TBL] [Abstract][Full Text] [Related]
3. Risk-Adjusted In-Hospital Mortality Models for Congestive Heart Failure and Acute Myocardial Infarction: Value of Clinical Laboratory Data and Race/Ethnicity. Lim E; Cheng Y; Reuschel C; Mbowe O; Ahn HJ; Juarez DT; Miyamura J; Seto TB; Chen JJ Health Serv Res; 2015 Aug; 50 Suppl 1(Suppl 1):1351-71. PubMed ID: 26073945 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of claims data to improve risk adjustment of hospital mortality. Pine M; Jordan HS; Elixhauser A; Fry DE; Hoaglin DC; Jones B; Meimban R; Warner D; Gonzales J JAMA; 2007 Jan; 297(1):71-6. PubMed ID: 17200477 [TBL] [Abstract][Full Text] [Related]
5. Using automated clinical data for risk adjustment: development and validation of six disease-specific mortality predictive models for pay-for-performance. Tabak YP; Johannes RS; Silber JH Med Care; 2007 Aug; 45(8):789-805. PubMed ID: 17667314 [TBL] [Abstract][Full Text] [Related]
6. Adding Laboratory Data to Hospital Claims Data to Improve Risk Adjustment of Inpatient/30-Day Postdischarge Outcomes. Pine M; Fry DE; Hannan EL; Naessens JM; Whitman K; Reband A; Qian F; Schindler J; Sonneborn M; Roland J; Hyde L; Dennison BA Am J Med Qual; 2017; 32(2):141-147. PubMed ID: 26917809 [TBL] [Abstract][Full Text] [Related]
7. Modifying ICD-9-CM coding of secondary diagnoses to improve risk-adjustment of inpatient mortality rates. Pine M; Jordan HS; Elixhauser A; Fry DE; Hoaglin DC; Jones B; Meimban R; Warner D; Gonzales J Med Decis Making; 2009; 29(1):69-81. PubMed ID: 18812585 [TBL] [Abstract][Full Text] [Related]
8. A hybrid Centers for Medicaid and Medicare service mortality model in 3 diagnoses. Render ML; Almenoff PL; Christianson A; Sales AE; Czarnecki T; Deddens JA; Freyberg RW; Eyman J; Hofer TP Med Care; 2012 Jun; 50(6):520-6. PubMed ID: 22584887 [TBL] [Abstract][Full Text] [Related]
9. Development and testing of a systemic lupus-specific risk adjustment index for in-hospital mortality. Ward MM J Rheumatol; 2000 Jun; 27(6):1408-13. PubMed ID: 10852262 [TBL] [Abstract][Full Text] [Related]
10. Risk-adjusting acute myocardial infarction mortality: are APR-DRGs the right tool? Romano PS; Chan BK Health Serv Res; 2000 Mar; 34(7):1469-89. PubMed ID: 10737448 [TBL] [Abstract][Full Text] [Related]
11. Impact of the present-on-admission indicator on hospital quality measurement: experience with the Agency for Healthcare Research and Quality (AHRQ) Inpatient Quality Indicators. Glance LG; Osler TM; Mukamel DB; Dick AW Med Care; 2008 Feb; 46(2):112-9. PubMed ID: 18219238 [TBL] [Abstract][Full Text] [Related]
12. Development and validation of a model that uses enhanced administrative data to predict mortality in patients with sepsis. Lagu T; Lindenauer PK; Rothberg MB; Nathanson BH; Pekow PS; Steingrub JS; Higgins TL Crit Care Med; 2011 Nov; 39(11):2425-30. PubMed ID: 22005222 [TBL] [Abstract][Full Text] [Related]
13. Using administrative data for mortality risk adjustment in pediatric congenital cardiac surgery. Kane JM; Scalcucci J; Hohmann SF; Johnson T; Behal R Pediatr Crit Care Med; 2013 Jun; 14(5):491-8. PubMed ID: 23628836 [TBL] [Abstract][Full Text] [Related]
14. Risk-adjustment models for heart failure patients' 30-day mortality and readmission rates: the incremental value of clinical data abstracted from medical charts beyond hospital discharge record. Lenzi J; Avaldi VM; Hernandez-Boussard T; Descovich C; Castaldini I; Urbinati S; Di Pasquale G; Rucci P; Fantini MP BMC Health Serv Res; 2016 Sep; 16(1):473. PubMed ID: 27600617 [TBL] [Abstract][Full Text] [Related]
15. Comorbidities, complications, and coding bias. Does the number of diagnosis codes matter in predicting in-hospital mortality? Iezzoni LI; Foley SM; Daley J; Hughes J; Fisher ES; Heeren T JAMA; 1992 Apr 22-29; 267(16):2197-203. PubMed ID: 1556797 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the performance of two comorbidity measures, with and without information from prior hospitalizations. Stukenborg GJ; Wagner DP; Connors AF Med Care; 2001 Jul; 39(7):727-39. PubMed ID: 11458137 [TBL] [Abstract][Full Text] [Related]
17. Should we add clinical variables to administrative data?: The case of risk-adjusted case fatality rates after admission for acute myocardial infarction. Johnston TC; Coory MD; Scott I; Duckett S Med Care; 2007 Dec; 45(12):1180-5. PubMed ID: 18007168 [TBL] [Abstract][Full Text] [Related]
18. Relationship between Medicare's hospital compare performance measures and mortality rates. Werner RM; Bradlow ET JAMA; 2006 Dec; 296(22):2694-702. PubMed ID: 17164455 [TBL] [Abstract][Full Text] [Related]
19. Variations in standardized hospital mortality rates for six common medical diagnoses: implications for profiling hospital quality. Rosenthal GE; Shah A; Way LE; Harper DL Med Care; 1998 Jul; 36(7):955-64. PubMed ID: 9674614 [TBL] [Abstract][Full Text] [Related]
20. The importance of laboratory data for comparing outcomes and detecting 'outlier' wards in the treatment of patients with pneumonia. Maor Y; Rubin HR; Gabbai U; Mozes B J Health Serv Res Policy; 1998 Jan; 3(1):39-43. PubMed ID: 10180388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]