BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9929447)

  • 1. Kinetic Analyses of Colloidal Crystallization in a Sinusoidal Electric Field as Studied by Reflection Spectroscopy.
    Okubo T; Ishiki H
    J Colloid Interface Sci; 1999 Mar; 211(1):151-159. PubMed ID: 9929447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic Analyses of Colloidal Crystallization in Alcoholic Organic Solvents and Their Aqueous Mixtures As Studied by Reflection Spectroscopy.
    Okubo T; Okada S
    J Colloid Interface Sci; 1998 Aug; 204(1):198-204. PubMed ID: 9665784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Analyses of Colloidal Crystallization in a Wide Range of Sphere Concentrations as Studied by Reflection Spectroscopy.
    Okubo T; Ishiki H
    J Colloid Interface Sci; 2000 Aug; 228(1):151-156. PubMed ID: 10882505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic Analyses of the Colloidal Crystallization of Silica Spheres As Studied by Reflection Spectroscopy.
    Okubo T; Okada S
    J Colloid Interface Sci; 1997 Aug; 192(2):490-6. PubMed ID: 9367574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-optic Properties of Colloidal Crystals As Studied by Reflection Spectroscopy.
    Okubo T; Tsuchida A; Tanahashi T; Iwata A
    J Colloid Interface Sci; 1998 Nov; 207(1):130-136. PubMed ID: 9778400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal crystals of core-shell type spheres with poly(styrene) core and poly(ethylene oxide) shell.
    Okamoto J; Kimura H; Tsuchida A; Okubo T; Ito K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):231-5. PubMed ID: 17254758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions.
    Faunce CA; Reichelt H; Paradies HH; Quitschau P; Zimmermann K
    J Chem Phys; 2005 Jun; 122(21):214727. PubMed ID: 15974782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drying dissipative patterns of the colloidal crystals of silica spheres in an dc-electric field.
    Okubo T; Kimura K; Tsuchida A
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):201-9. PubMed ID: 17126538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced pearl-chain formation by electrokinetic interaction with the bottom surface of vessel.
    Nishimura S; Matsumura H; Kosuge K; Yamaguchi T
    Langmuir; 2007 Aug; 23(17):8789-97. PubMed ID: 17628082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Electrophoretic Mobility and Electric Conductivity of a Concentrated Suspension of Colloidal Spheres with Arbitrary Double-Layer Thickness.
    Ding JM; Keh HJ
    J Colloid Interface Sci; 2001 Apr; 236(1):180-193. PubMed ID: 11254344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal electroconvection in a thin horizontal cell. I. Microscopic cooperative patterns at low voltage.
    Han Y; Grier DG
    J Chem Phys; 2005 Apr; 122(16):164701. PubMed ID: 15945693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrating colloids with electric field gradients. I. Particle transport and growth mechanism of hard-sphere-like crystals in an electric bottle.
    Leunissen ME; Sullivan MT; Chaikin PM; van Blaaderen A
    J Chem Phys; 2008 Apr; 128(16):164508. PubMed ID: 18447460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sedimentation Velocity and Potential in Concentrated Suspensions of Charged Spheres with Arbitrary Double-Layer Thickness.
    Keh HJ; Ding JM
    J Colloid Interface Sci; 2000 Jul; 227(2):540-552. PubMed ID: 10873344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions.
    Saimoto Y; Satoh T; Konno M
    J Colloid Interface Sci; 1999 Nov; 219(1):135-143. PubMed ID: 10527579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization kinetics of colloidal spheres under stationary shear flow.
    Holmqvist P; Lettinga MP; Buitenhuis J; Dhont JK
    Langmuir; 2005 Nov; 21(24):10976-82. PubMed ID: 16285761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentrating colloids with electric field gradients. II. Phase transitions and crystal buckling of long-ranged repulsive charged spheres in an electric bottle.
    Leunissen ME; van Blaaderen A
    J Chem Phys; 2008 Apr; 128(16):164509. PubMed ID: 18447461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ observation of colloidal monolayer nucleation driven by an alternating electric field.
    Zhang KQ; Liu XY
    Nature; 2004 Jun; 429(6993):739-43. PubMed ID: 15201905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle Interactions in Diffusiophoresis and Electrophoresis of Colloidal Spheres with Thin but Polarized Double Layers.
    Tu HJ; Keh HJ
    J Colloid Interface Sci; 2000 Nov; 231(2):265-282. PubMed ID: 11049677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave synthesis of SAPO-11 and AlPO-11: aspects of reactor engineering.
    Gharibeh M; Tompsett GA; Conner WC; Yngvesson KS
    Chemphyschem; 2008 Dec; 9(17):2580-91. PubMed ID: 19034925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymorph selection during the crystallization of Yukawa systems.
    Desgranges C; Delhommelle J
    J Chem Phys; 2007 Feb; 126(5):054501. PubMed ID: 17302479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.