These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9929462)

  • 1. Does behavioural hypothermia promote post-exercise recovery in cold-submerged frogs?
    Tattersall GJ; Boutilier RG
    J Exp Biol; 1999 Mar; 202 (Pt 5)():609-22. PubMed ID: 9929462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tribute to R. G. Boutilier: the role for skeletal muscle in the hypoxia-induced hypometabolic responses of submerged frogs.
    West TG; Donohoe PH; Staples JF; Askew GN
    J Exp Biol; 2006 Apr; 209(Pt 7):1159-68. PubMed ID: 16547288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiratory, metabolic, and acid-base correlates of aerobic metabolic rate reduction in overwintering frogs.
    Donohoe PH; West TG; Boutilier RG
    Am J Physiol; 1998 Mar; 274(3):R704-10. PubMed ID: 9530236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant set points for pH and P(CO2) in cold-submerged skin-breathing frogs.
    Tattersall GJ; Boutilier RG
    Respir Physiol; 1999 Oct; 118(1):49-59. PubMed ID: 10568419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioural adaptations of Rana temporaria to cold climates.
    Ludwig G; Sinsch U; Pelster B
    J Therm Biol; 2015; 49-50():82-90. PubMed ID: 25774030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balancing hypoxia and hypothermia in cold-submerged frogs.
    Tattersall GJ; Boutilier RG
    J Exp Biol; 1997 Mar; 200(Pt 6):1031-8. PubMed ID: 9104781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal influences on the habitat preference and the diurnal activity in three European Rana species.
    Sinsch U
    Oecologia; 1984 Sep; 64(1):125-131. PubMed ID: 28311649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of lung ventilation following overwintering conditions in bullfrogs, Lithobates catesbeianus.
    Santin JM; Hartzler LK
    J Exp Biol; 2016 Jul; 219(Pt 13):2003-14. PubMed ID: 27091862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological ecology of aquatic overwintering in ranid frogs.
    Tattersall GJ; Ultsch GR
    Biol Rev Camb Philos Soc; 2008 May; 83(2):119-40. PubMed ID: 18429765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas exchange, metabolite status and excess post-exercise oxygen consumption after repetitive bouts of exhaustive exercise in juvenile rainbow trout.
    Scarabello M; Heigenhauser GJ; Wood CM
    J Exp Biol; 1992 Jun; 167():155-69. PubMed ID: 1634861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression.
    Boutilier RG; St-Pierre J
    J Exp Biol; 2002 Aug; 205(Pt 15):2287-96. PubMed ID: 12110662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic characteristics of overwintering by the high-altitude dwelling Xizang plateau frog, Nanorana parkeri.
    Niu Y; Cao W; Storey KB; He J; Wang J; Zhang T; Tang X; Chen Q
    J Comp Physiol B; 2020 Jul; 190(4):433-444. PubMed ID: 32274534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A respirometric analysis of fuel use during aerobic swimming at different temperatures in rainbow trout (Oncorhynchus mykiss).
    Kieffer JD; Alsop D; Wood CM
    J Exp Biol; 1998 Nov; 201 (Pt 22)():3123-33. PubMed ID: 9787132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts.
    Hardewig I; Van Dijk PL; Portner HO
    Am J Physiol; 1998 Jun; 274(6):R1789-96. PubMed ID: 9841552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EFFECTS OF ENVIRONMENTAL TEMPERATURE ON THE METABOLIC AND ACID-BASE RESPONSES OF RAINBOW TROUT TO EXHAUSTIVE EXERCISE.
    Kieffer J; Currie S; Tufts B
    J Exp Biol; 1994 Sep; 194(1):299-317. PubMed ID: 9317846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise and recovery metabolism in the Pacific spiny dogfish (Squalus acanthias).
    Richards JG; Heigenhauser GJ; Wood CM
    J Comp Physiol B; 2003 Aug; 173(6):463-74. PubMed ID: 12851779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of an acute temperature change on the metabolic recovery from exhaustive exercise in luvenile Atlantic salmon (Salmo salar).
    Galloway BJ; Kieffer JD
    Physiol Biochem Zool; 2003; 76(5):652-62. PubMed ID: 14671713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
    Bangsbo J; Johansen L; Graham T; Saltin B
    J Physiol; 1993 Mar; 462():115-33. PubMed ID: 8331579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protective effects of metabolic rate depression in hypoxic cold submerged frogs.
    Donohoe PH; Boutilier RG
    Respir Physiol; 1998 Mar; 111(3):325-36. PubMed ID: 9628237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphogen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism.
    Wang Y; Heigenhauser GJ; Wood CM
    J Exp Biol; 1994 Oct; 195():227-58. PubMed ID: 7964413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.