These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 9929492)
1. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length. Ramstedt B; Slotte JP Biophys J; 1999 Feb; 76(2):908-15. PubMed ID: 9929492 [TBL] [Abstract][Full Text] [Related]
2. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Smaby JM; Kulkarni VS; Momsen M; Brown RE Biophys J; 1996 Feb; 70(2):868-77. PubMed ID: 8789104 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins. Ramstedt B; Slotte JP Biophys J; 1999 Sep; 77(3):1498-506. PubMed ID: 10465760 [TBL] [Abstract][Full Text] [Related]
4. Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains. Smaby JM; Momsen M; Kulkarni VS; Brown RE Biochemistry; 1996 May; 35(18):5696-704. PubMed ID: 8639529 [TBL] [Abstract][Full Text] [Related]
5. Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order. Lönnfors M; Doux JP; Killian JA; Nyholm TK; Slotte JP Biophys J; 2011 Jun; 100(11):2633-41. PubMed ID: 21641308 [TBL] [Abstract][Full Text] [Related]
6. Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Lund-Katz S; Laboda HM; McLean LR; Phillips MC Biochemistry; 1988 May; 27(9):3416-23. PubMed ID: 3390441 [TBL] [Abstract][Full Text] [Related]
7. The influence of hydrophobic mismatch on androsterol/phosphatidylcholine interactions in model membranes. Ohvo-Rekilä H; Mattjus P; Slotte JP Biochim Biophys Acta; 1998 Jul; 1372(2):331-8. PubMed ID: 9675331 [TBL] [Abstract][Full Text] [Related]
8. X-ray grazing incidence diffraction and Langmuir monolayer studies of the interaction of beta-cyclodextrin with model lipid membranes. Flasiński M; Broniatowski M; Majewski J; Dynarowicz-Łatka P J Colloid Interface Sci; 2010 Aug; 348(2):511-21. PubMed ID: 20493495 [TBL] [Abstract][Full Text] [Related]
9. Membrane properties of D-erythro-N-acyl sphingomyelins and their corresponding dihydro species. Kuikka M; Ramstedt B; Ohvo-Rekilä H; Tuuf J; Slotte JP Biophys J; 2001 May; 80(5):2327-37. PubMed ID: 11325733 [TBL] [Abstract][Full Text] [Related]
10. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Smaby JM; Momsen MM; Brockman HL; Brown RE Biophys J; 1997 Sep; 73(3):1492-505. PubMed ID: 9284316 [TBL] [Abstract][Full Text] [Related]
11. Miscibility of acyl-chain defined phosphatidylcholines with N-palmitoyl sphingomyelin in bilayer membranes. Térová B; Slotte JP; Nyholm TK Biochim Biophys Acta; 2004 Dec; 1667(2):182-9. PubMed ID: 15581854 [TBL] [Abstract][Full Text] [Related]
12. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Ohvo H; Slotte JP Biochemistry; 1996 Jun; 35(24):8018-24. PubMed ID: 8672506 [TBL] [Abstract][Full Text] [Related]
13. Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determines the magnitude of condensation. Smaby JM; Brockman HL; Brown RE Biochemistry; 1994 Aug; 33(31):9135-42. PubMed ID: 8049216 [TBL] [Abstract][Full Text] [Related]
14. Sphingomyelin interfacial behavior: the impact of changing acyl chain composition. Li XM; Smaby JM; Momsen MM; Brockman HL; Brown RE Biophys J; 2000 Apr; 78(4):1921-31. PubMed ID: 10733971 [TBL] [Abstract][Full Text] [Related]
15. Influence of chain length and unsaturation on sphingomyelin bilayers. Niemelä PS; Hyvönen MT; Vattulainen I Biophys J; 2006 Feb; 90(3):851-63. PubMed ID: 16284257 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the interaction of dihydrocholesterol and cholesterol with sphingolipid or phospholipid Langmuir monolayers. Lancelot E; Grauby-Heywang C Colloids Surf B Biointerfaces; 2007 Sep; 59(1):81-6. PubMed ID: 17544260 [TBL] [Abstract][Full Text] [Related]
17. Membrane properties of and cholesterol's interactions with a biologically relevant three-chain sphingomyelin: 3O-palmitoyl-N-palmitoyl-D-erythro-sphingomyelin. Sergelius C; Slotte JP Biochim Biophys Acta; 2011 Dec; 1808(12):2841-8. PubMed ID: 21893026 [TBL] [Abstract][Full Text] [Related]
18. Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins. Li XM; Momsen MM; Smaby JM; Brockman HL; Brown RE Biochemistry; 2001 May; 40(20):5954-63. PubMed ID: 11352730 [TBL] [Abstract][Full Text] [Related]
19. Membrane bilayer properties of sphingomyelins with amide-linked 2- or 3-hydroxylated fatty acids. Ekholm O; Jaikishan S; Lönnfors M; Nyholm TK; Slotte JP Biochim Biophys Acta; 2011 Mar; 1808(3):727-32. PubMed ID: 21167130 [TBL] [Abstract][Full Text] [Related]
20. Effect of hydrophobic mismatch and interdigitation on sterol/sphingomyelin interaction in ternary bilayer membranes. Jaikishan S; Slotte JP Biochim Biophys Acta; 2011 Jul; 1808(7):1940-5. PubMed ID: 21515240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]