BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9929556)

  • 41. Effect of the putative Ca2+-receptor agonist Gd3+ on the active transepithelial Na+ transport in frog skin.
    Friis S; Nielsen R
    J Membr Biol; 2001 Dec; 184(3):291-7. PubMed ID: 11891554
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tizolemide-induced changes of passive transport components across the basolateral membrane of isolated frog skin.
    Nagel W; Eigler J; Früchtl J
    Pflugers Arch; 1981 Sep; 391(3):219-25. PubMed ID: 6289244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport.
    Taylor A; Windhager EE
    Am J Physiol; 1979 Jun; 236(6):F505-12. PubMed ID: 375753
    [TBL] [Abstract][Full Text] [Related]  

  • 44. pH modulates cAMP-induced increase in Na+ transport across frog skin epithelium.
    Lyall V; Biber TU
    Biochim Biophys Acta; 1995 Nov; 1240(1):65-74. PubMed ID: 7495850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for apical sodium channels in frog lung epithelial cells.
    Fischer H; Van Driessche W; Clauss W
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C764-71. PubMed ID: 2539725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):99-109. PubMed ID: 9011625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cation transport by sweat ducts in primary culture. Ionic mechanism of cholinergically evoked current oscillations.
    Larsen EH; Novak I; Pedersen PS
    J Physiol; 1990 May; 424():109-31. PubMed ID: 2167967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium.
    Altenberg GA; Stoddard JS; Reuss L
    J Gen Physiol; 1992 Feb; 99(2):241-62. PubMed ID: 1613485
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mucosal histamine inhibits Na absorption and stimulates Cl secretion across equine tracheal epithelium.
    Tessier GJ; Traynor TR; Kannan MS; O'Grady SM
    Am J Physiol; 1991 Dec; 261(6 Pt 1):L456-61. PubMed ID: 1767865
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correlation between intracellular activities of Ca2+ and Na+ in rat cortical collecting duct--A possible coupling mechanism between Na+-K+-ATPase and Basolateral K+ conductance.
    Schlatter E; Haxelmans S; Ankorina I
    Kidney Blood Press Res; 1996; 19(1):24-31. PubMed ID: 8818114
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface potentials and sodium entry in frog skin epithelium.
    Benos D; Latorre R; Reyes J
    J Physiol; 1981 Dec; 321():163-74. PubMed ID: 6978394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid activation of KATP channels by aldosterone in principal cells of frog skin.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):111-20. PubMed ID: 9011603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+.
    Ishikawa T; Marunaka Y; Rotin D
    J Gen Physiol; 1998 Jun; 111(6):825-46. PubMed ID: 9607939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium.
    Rytved KA; Nielsen R
    Pflugers Arch; 1999 Jan; 437(2):213-8. PubMed ID: 9929561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel synergistic stimulation of Na+-transport across frog skin (Xenopus laevis) by external Cd2+- and Ca2+-ions.
    Scholtz E; Zeiske W
    Pflugers Arch; 1988 Dec; 413(2):174-80. PubMed ID: 3217238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relations among transepithelial sodium transport, potassium exchange, and cell volume in rabbit ileum.
    Nellans HN; Schultz SG
    J Gen Physiol; 1976 Oct; 68(4):441-63. PubMed ID: 993767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of prostaglandin release in the response of tight epithelia to Ca2+ ionophores.
    Erlij D; Gersten L; Sterba G; Schoen HF
    Am J Physiol; 1986 Apr; 250(4 Pt 1):C629-36. PubMed ID: 3083689
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of a small serosal hydrostatic pressure on sodium and water transport and morphology in rabbit gall-bladder.
    Eldrup E; Frederiksen O; Møllgård K; Rostgaard J
    J Physiol; 1982 Oct; 331():67-85. PubMed ID: 7153921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactions of sodium transport, cell volume, and calcium in frog urinary bladder.
    Davis CW; Finn AL
    J Gen Physiol; 1987 May; 89(5):687-702. PubMed ID: 3496423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.