BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9929606)

  • 1. Visualizing odor detection in olfactory cilia by calcium imaging.
    Leinders-Zufall T; Greer CA; Shepherd GM; Zufall F
    Ann N Y Acad Sci; 1998 Nov; 855():205-7. PubMed ID: 9929606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction.
    Leinders-Zufall T; Greer CA; Shepherd GM; Zufall F
    J Neurosci; 1998 Aug; 18(15):5630-9. PubMed ID: 9671654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics.
    Leinders-Zufall T; Rand MN; Shepherd GM; Greer CA; Zufall F
    J Neurosci; 1997 Jun; 17(11):4136-48. PubMed ID: 9151731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of odor-induced Ca(2+) transients by store-operated Ca(2+) release and its role in olfactory signal transduction.
    Zufall F; Leinders-Zufall T; Greer CA
    J Neurophysiol; 2000 Jan; 83(1):501-12. PubMed ID: 10634891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.
    Delgado R; Saavedra MV; Schmachtenberg O; Sierralta J; Bacigalupo J
    J Neurophysiol; 2003 Sep; 90(3):2022-8. PubMed ID: 12801890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons.
    Madrid R; Delgado R; Bacigalupo J
    J Neurophysiol; 2005 Sep; 94(3):1781-8. PubMed ID: 15817646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ca-activated Cl channel and its control in rat olfactory receptor neurons.
    Reisert J; Bauer PJ; Yau KW; Frings S
    J Gen Physiol; 2003 Sep; 122(3):349-63. PubMed ID: 12939394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and molecular Ca2+ microdomains in olfactory cilia support low signaling amplification of odor transduction.
    Castillo K; Restrepo D; Bacigalupo J
    Eur J Neurosci; 2010 Sep; 32(6):932-8. PubMed ID: 20849528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Ca(2+)-activated Cl(-) channel currents recorded from toad olfactory cilia.
    Delgado R; Mura CV; Bacigalupo J
    BMC Neurosci; 2016 Apr; 17(1):17. PubMed ID: 27113933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase.
    Boccaccio A; Lagostena L; Hagen V; Menini A
    J Gen Physiol; 2006 Aug; 128(2):171-84. PubMed ID: 16880265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium mediates the activation of the inhibitory current induced by odorants in toad olfactory receptor neurons.
    Morales B; Madrid R; Bacigalupo J
    FEBS Lett; 1997 Feb; 402(2-3):259-64. PubMed ID: 9037207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-type Ca2+ channels mediate propagation of odor-induced Ca2+ transients in rat olfactory receptor neurons.
    Gautam SH; Otsuguro KI; Ito S; Saito T; Habara Y
    Neuroscience; 2007 Jan; 144(2):702-13. PubMed ID: 17110049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory current responses of olfactory receptor neurons to odorants and computer simulation based on a cyclic AMP transduction model.
    Suzuki N; Takahata M; Sato K
    Chem Senses; 2002 Nov; 27(9):789-801. PubMed ID: 12438204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose.
    Villar PS; Delgado R; Vergara C; Reyes JG; Bacigalupo J
    J Neurosci; 2017 Jun; 37(23):5736-5743. PubMed ID: 28500222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine reduces odor- and elevated-K(+)-induced calcium responses in mouse olfactory receptor neurons in situ.
    Hegg CC; Lucero MT
    J Neurophysiol; 2004 Apr; 91(4):1492-9. PubMed ID: 14657189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking of unfamiliar odors is facilitated by signal amplification through anoctamin 2 chloride channels in mouse olfactory receptor neurons.
    Neureither F; Stowasser N; Frings S; Möhrlen F
    Physiol Rep; 2017 Aug; 5(15):. PubMed ID: 28784854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrochemical basis of odor transduction in vertebrate olfactory cilia.
    Kleene SJ
    Chem Senses; 2008 Nov; 33(9):839-59. PubMed ID: 18703537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odorant inhibition of the olfactory cyclic nucleotide-gated channel with a native molecular assembly.
    Chen TY; Takeuchi H; Kurahashi T
    J Gen Physiol; 2006 Sep; 128(3):365-71. PubMed ID: 16940558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation.
    Munger SD; Lane AP; Zhong H; Leinders-Zufall T; Yau KW; Zufall F; Reed RR
    Science; 2001 Dec; 294(5549):2172-5. PubMed ID: 11739959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drugs affecting phospholipase C-mediated signal transduction block the olfactory cyclic nucleotide-gated current of adult zebrafish.
    Ma L; Michel WC
    J Neurophysiol; 1998 Mar; 79(3):1183-92. PubMed ID: 9497400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.