These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
54 related articles for article (PubMed ID: 9929893)
1. [A system of coupled reactions for enzymatic synthesis of L-malate]. Pavlovets VV Prikl Biokhim Mikrobiol; 1998; 34(6):642-4. PubMed ID: 9929893 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of (2R,3R)-erythro- and (2R,3S)-threo-fluoromalate using malic dehydrogenase; stereoselectivity of malic dehydrogenase. Urbauer JL; Bradshaw DE; Cleland WW Biochemistry; 1998 Dec; 37(51):18018-25. PubMed ID: 9922170 [TBL] [Abstract][Full Text] [Related]
3. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Karsten WE; Hwang CC; Cook PF Biochemistry; 1999 Apr; 38(14):4398-402. PubMed ID: 10194359 [TBL] [Abstract][Full Text] [Related]
4. [On the decomposition of L-malic acid by lactic acid bacteria. II. Comparative study of malate-decomposing enzymes in various species of Lactobacillus plantarum]. Flesch P; Holbach B Arch Mikrobiol; 1965 Oct; 52(2):147-53. PubMed ID: 5882152 [No Abstract] [Full Text] [Related]
5. Purification and properties of the human erythrocyte malic dehydrogenase. Utilization of L-malate by human erythrocytes. Snyder LM; Reddy WJ J Lab Clin Med; 1971 Mar; 77(3):459-69. PubMed ID: 5553730 [No Abstract] [Full Text] [Related]
6. [The malate dehydrogenase and lactate dehydrogenase activity of bacteria, decomposing L-malic acid]. Flesch P Arch Mikrobiol; 1969; 68(3):259-77. PubMed ID: 5383856 [No Abstract] [Full Text] [Related]
7. Involvement of Phe19 in the Mn(2+)-L-malate binding and the subunit interactions of pigeon liver malic enzyme. Chou WY; Liu MY; Huang SM; Chang GG Biochemistry; 1996 Jul; 35(30):9873-9. PubMed ID: 8703961 [TBL] [Abstract][Full Text] [Related]
8. [Activity of lactic and malic acid dehydrogenases in the blood serum of newborn infants and their relation to some products of hemolysis]. JICHA J; HORAK M; PLACHY V; BLECHOVA D Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1961; 4():615-22. PubMed ID: 13957745 [No Abstract] [Full Text] [Related]
9. [Malate dehydrogenase and lactate dehydrogenase in trematodes and turbellarians]. Vykhrestiuk NP; Burenina EA; Iarygina GV Zh Evol Biokhim Fiziol; 1986; 22(1):24-9. PubMed ID: 3962529 [TBL] [Abstract][Full Text] [Related]
10. Changes in NAD(P)+-dependent malic enzyme and malate dehydrogenase activities during fibroblast proliferation. McKeehan WL; McKeehan KA J Cell Physiol; 1982 Feb; 110(2):142-8. PubMed ID: 7068771 [TBL] [Abstract][Full Text] [Related]
11. Development of an enzymatic chromatography strip with nicotinamide adenine dinucleotide-tetrazolium coupling reactions for quantitative l-lactate analysis. Kan SC; Chang WF; Lan MC; Lin CC; Lai WS; Shieh CJ; Hsiung KP; Liu YC Anal Biochem; 2015 Feb; 471():61-6. PubMed ID: 25454507 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347 [TBL] [Abstract][Full Text] [Related]
13. Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization. Fernández CE; Mancera M; Holler E; Bou JJ; Galbis JA; Muñoz-Guerra S Macromol Biosci; 2005 Feb; 5(2):172-6. PubMed ID: 15719432 [TBL] [Abstract][Full Text] [Related]
14. Studies with specific enzyme inhibitors. XIV. The effects of enzymatically synthesized (-)-erythro-fluoromalic acid on malate dehydrogenase and on anion carriers of liver mitochondria. Skilleter DN; Dummel RJ; Kun E Mol Pharmacol; 1972 Mar; 8(2):139-48. PubMed ID: 5025200 [No Abstract] [Full Text] [Related]
15. Mapping the active site topography of the NAD-malic enzyme via alanine-scanning site-directed mutagenesis. Karsten WE; Chooback L; Liu D; Hwang CC; Lynch C; Cook PF Biochemistry; 1999 Aug; 38(32):10527-32. PubMed ID: 10441149 [TBL] [Abstract][Full Text] [Related]
16. Role of the divalent metal ion in the NAD:malic enzyme reaction: an ESEEM determination of the ground state conformation of malate in the E:Mn:malate complex. Tipton PA; Quinn TP; Peisach J; Cook PF Protein Sci; 1996 Aug; 5(8):1648-54. PubMed ID: 8844853 [TBL] [Abstract][Full Text] [Related]
17. Structural studies of malate dehydrogenases (MDHs): MDHs in Brevundimonas species are the first reported MDHs in Proteobacteria which resemble lactate dehydrogenases in primary structure. Charnock C J Bacteriol; 1997 Jun; 179(12):4066-70. PubMed ID: 9190829 [TBL] [Abstract][Full Text] [Related]
18. [Characterization of a malic enzyme isoform V from Mucor circinelloides]. Zhang Y; Chen H; Song Y; Zhang H; Chen Y; Chen W Wei Sheng Wu Xue Bao; 2016 Feb; 56(2):309-16. PubMed ID: 27373079 [TBL] [Abstract][Full Text] [Related]
19. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
20. Myoglobin redox form stabilization by compartmentalized lactate and malate dehydrogenases. Mohan A; Hunt MC; Muthukrishnan S; Barstow TJ; Houser TA J Agric Food Chem; 2010 Jun; 58(11):7021-9. PubMed ID: 20465309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]