These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 9930456)
1. Assessment of glutaraldehyde crosslinking efficiency with an amine-specific fluorescent probe. Ricks J; Scott M; Vesely I Ann Thorac Surg; 1998 Dec; 66(6 Suppl):S240-4. PubMed ID: 9930456 [TBL] [Abstract][Full Text] [Related]
2. Viscoelasticity of dynamically fixed bioprosthetic valves. II. Effect of glutaraldehyde concentration. Duncan AC; Boughner D; Vesely I J Thorac Cardiovasc Surg; 1997 Feb; 113(2):302-10. PubMed ID: 9040624 [TBL] [Abstract][Full Text] [Related]
3. A comparison between glutaraldehyde and diepoxide-fixed stentless porcine aortic valves: biochemical and mechanical characterization and resistance to mineralization. Myers DJ; Nakaya G; Girardot MN; Christie GW J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S98-101. PubMed ID: 8581221 [TBL] [Abstract][Full Text] [Related]
4. Bioprostheses and its Alternative Fixation. Hendriks M; Everaerts F; Verhoeven M J Long Term Eff Med Implants; 2017; 27(2-4):137-157. PubMed ID: 29773037 [TBL] [Abstract][Full Text] [Related]
5. Amide cross-linking: an alternative to glutaraldehyde fixation. Girardot JM; Girardot MN J Heart Valve Dis; 1996 Sep; 5(5):518-25. PubMed ID: 8894992 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds. Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592 [TBL] [Abstract][Full Text] [Related]
7. Glutaraldehyde detoxification in addition to enhanced amine cross-linking dramatically reduces bioprosthetic tissue calcification in the rat model. Weissenstein C; Human P; Bezuidenhout D; Zilla P J Heart Valve Dis; 2000 Mar; 9(2):230-40. PubMed ID: 10772041 [TBL] [Abstract][Full Text] [Related]
8. Glutaraldehyde detoxification of aortic wall tissue: a promising perspective for emerging bioprosthetic valve concepts. Zilla P; Fullard L; Trescony P; Meinhart J; Bezuidenhout D; Gorlitzer M; Human P; von Oppell U J Heart Valve Dis; 1997 Sep; 6(5):510-20. PubMed ID: 9330173 [TBL] [Abstract][Full Text] [Related]
9. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Jayakrishnan A; Jameela SR Biomaterials; 1996 Mar; 17(5):471-84. PubMed ID: 8991478 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of porcine valves prepared by dye-mediated photooxidation. Moore MA; Phillips RE; McIlroy BK; Walley VM; Hendry PJ Ann Thorac Surg; 1998 Dec; 66(6 Suppl):S245-8. PubMed ID: 9930457 [TBL] [Abstract][Full Text] [Related]
11. Degradation effect of diepoxide fixation on porcine endogenous retrovirus DNA in heart valves: molecular aspects. Cyganek-Niemiec A; Strzalka-Mrozik B; Pawlus-Lachecka L; Wszolek J; Adamska J; Kudrjavtseva J; Zhuravleva I; Kimsa M; Okla H; Kimsa M; Gudek A; Mazurek U Int J Artif Organs; 2012 Jan; 35(1):25-33. PubMed ID: 22307333 [TBL] [Abstract][Full Text] [Related]
12. Studies on epoxy compound fixation. Sung HW; Cheng WH; Chiu IS; Hsu HL; Liu SA J Biomed Mater Res; 1996; 33(3):177-86. PubMed ID: 8864889 [TBL] [Abstract][Full Text] [Related]
13. Crosslinking characteristics of porcine tendons: effects of fixation with glutaraldehyde or epoxy. Sung HW; Shih JS; Hsu CS J Biomed Mater Res; 1996 Mar; 30(3):361-7. PubMed ID: 8698699 [TBL] [Abstract][Full Text] [Related]
14. Concentration of glutaraldehyde in fixation of bioprosthetic valves. Chanda J; Kuribayashi R; Abe T J Thorac Cardiovasc Surg; 1997 Sep; 114(3):512-3. PubMed ID: 9305216 [No Abstract] [Full Text] [Related]
15. Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry. Loke WK; Khor E Biomaterials; 1995 Feb; 16(3):251-8. PubMed ID: 7749003 [TBL] [Abstract][Full Text] [Related]
16. Diamine-extended glutaraldehyde- and carbodiimide crosslinks act synergistically in mitigating bioprosthetic aortic wall calcification. Zilla P; Bezuidenhout D; Torrianni M; Hendriks M; Human P J Heart Valve Dis; 2005 Jul; 14(4):538-45. PubMed ID: 16116882 [TBL] [Abstract][Full Text] [Related]
17. Porcine aortic wall flexibility. Fresh vs Denacol fixed vs glutaraldehyde fixed. Zhou J; Quintero LJ; Helmus MN; Lee C; Kafesjian R ASAIO J; 1997; 43(5):M470-5. PubMed ID: 9360087 [TBL] [Abstract][Full Text] [Related]
18. Porcine aortic valve bioprostheses: morphologic and functional considerations. Hilbert SL; Ferrans VJ J Long Term Eff Med Implants; 1992; 2(2-3):99-112. PubMed ID: 10148319 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets. Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141 [TBL] [Abstract][Full Text] [Related]
20. Hydrodynamic characteristics of porcine aortic valves cross-linked with glutaraldehyde and polyepoxy compounds. Soda A; Tanaka R; Saida Y; Takashima K; Hirayama T; Umezu M; Yamane Y ASAIO J; 2009; 55(1):13-8. PubMed ID: 19092670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]