These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9930661)

  • 41. Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100.
    Gawande PV; Kamat MY
    J Biotechnol; 1998 Dec; 66(2-3):165-75. PubMed ID: 9866868
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability.
    Hakulinen N; Turunen O; Jänis J; Leisola M; Rouvinen J
    Eur J Biochem; 2003 Apr; 270(7):1399-412. PubMed ID: 12653995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Module-intron correlation and intron sliding in family F/10 xylanase genes.
    Sato Y; Niimura Y; Yura K; Go M
    Gene; 1999 Sep; 238(1):93-101. PubMed ID: 10570988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus.
    Natesh R; Bhanumoorthy P; Vithayathil PJ; Sekar K; Ramakumar S; Viswamitra MA
    J Mol Biol; 1999 May; 288(5):999-1012. PubMed ID: 10329194
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes.
    Fernandes AC; Fontes CM; Gilbert HJ; Hazlewood GP; Fernandes TH; Ferreira LM
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):105-10. PubMed ID: 10432306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH.
    Turunen O; Vuorio M; Fenel F; Leisola M
    Protein Eng; 2002 Feb; 15(2):141-5. PubMed ID: 11917150
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a novel cold-active xylanase from Luteimonas species.
    Han Z; Shang-Guan F; Yang J
    World J Microbiol Biotechnol; 2018 Jul; 34(8):123. PubMed ID: 30054735
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of the active site residues of a glycoside hydrolase family 8 xylanase.
    Collins T; De Vos D; Hoyoux A; Savvides SN; Gerday C; Van Beeumen J; Feller G
    J Mol Biol; 2005 Nov; 354(2):425-35. PubMed ID: 16246370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conservation in the mechanism of glucuronoxylan hydrolysis revealed by the structure of glucuronoxylan xylanohydrolase (CtXyn30A) from Clostridium thermocellum.
    Freire F; Verma A; Bule P; Alves VD; Fontes CM; Goyal A; Najmudin S
    Acta Crystallogr D Struct Biol; 2016 Nov; 72(Pt 11):1162-1173. PubMed ID: 27841749
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystallization and preliminary X-ray analysis of an intracellular xylanase from Bacillus stearothermophilus T-6.
    Teplitsky A; Shulami S; Moryles S; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2000 Feb; 56(Pt 2):181-4. PubMed ID: 10666598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights into transition state stabilization of the beta-1,4-glycosidase Cex by covalent intermediate accumulation in active site mutants.
    Notenboom V; Birsan C; Nitz M; Rose DR; Warren RA; Withers SG
    Nat Struct Biol; 1998 Sep; 5(9):812-8. PubMed ID: 9731776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans.
    Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C
    Protein Eng; 1999 Mar; 12(3):251-7. PubMed ID: 10235626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystallographic analysis of family 11 endo-beta-1,4-xylanase Xyl1 from Streptomyces sp. S38.
    Wouters J; Georis J; Engher D; Vandenhaute J; Dusart J; Frere JM; Depiereux E; Charlier P
    Acta Crystallogr D Biol Crystallogr; 2001 Dec; 57(Pt 12):1813-9. PubMed ID: 11717493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi.
    MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG
    Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermostable xylanases produced at 37 degrees C and 45 degrees C by a thermotolerant Aspergillus strain.
    Mendicuti Castro LP; Trejo-Aguilar BA; Aguilar Osorio G
    FEMS Microbiol Lett; 1997 Jan; 146(1):97-102. PubMed ID: 8997712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of tryptophan residues in substrate binding to catalytic domains A and B of xylanase C from Fibrobacter succinogenes S85.
    McAllister KA; Marrone L; Clarke AJ
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):342-52. PubMed ID: 11004572
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermostable sites and catalytic characterization of xylanase XYNB of Aspergillus niger SCTCC 400264.
    Li XR; Xu H; Xie J; Yi QF; Li W; Qiao DR; Cao Y; Cao Y
    J Microbiol Biotechnol; 2014 Apr; 24(4):483-8. PubMed ID: 24444997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interactions defining the specificity between fungal xylanases and the xylanase-inhibiting protein XIP-I from wheat.
    Flatman R; McLauchlan WR; Juge N; Furniss C; Berrin JG; Hughes RK; Manzanares P; Ladbury JE; O'Brien R; Williamson G
    Biochem J; 2002 Aug; 365(Pt 3):773-81. PubMed ID: 11955286
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site.
    Van Petegem F; Collins T; Meuwis MA; Gerday C; Feller G; Van Beeumen J
    J Biol Chem; 2003 Feb; 278(9):7531-9. PubMed ID: 12475991
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus.
    Ko EP; Akatsuka H; Moriyama H; Shinmyo A; Hata Y; Katsube Y; Urabe I; Okada H
    Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):117-21. PubMed ID: 1359880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.