These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 9930665)
1. Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Eisenhaber B; Bork P; Eisenhaber F Protein Eng; 1998 Dec; 11(12):1155-61. PubMed ID: 9930665 [TBL] [Abstract][Full Text] [Related]
2. Prediction of potential GPI-modification sites in proprotein sequences. Eisenhaber B; Bork P; Eisenhaber F J Mol Biol; 1999 Sep; 292(3):741-58. PubMed ID: 10497036 [TBL] [Abstract][Full Text] [Related]
3. Structure and Function of the Glycosylphosphatidylinositol Transamidase, a Transmembrane Complex Catalyzing GPI Anchoring of Proteins. Li D Subcell Biochem; 2024; 104():425-458. PubMed ID: 38963495 [TBL] [Abstract][Full Text] [Related]
4. Carboxy-terminal processing of the urokinase receptor: implications for substrate recognition and glycosylphosphatidylinositol anchor addition. Aceto J; Kieber-Emmons T; Cines DB Biochemistry; 1999 Jan; 38(3):992-1001. PubMed ID: 9893995 [TBL] [Abstract][Full Text] [Related]
5. Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Ohishi K; Inoue N; Maeda Y; Takeda J; Riezman H; Kinoshita T Mol Biol Cell; 2000 May; 11(5):1523-33. PubMed ID: 10793132 [TBL] [Abstract][Full Text] [Related]
7. Recent developments in the molecular, biochemical and functional characterization of GPI8 and the GPI-anchoring mechanism [review]. Zacks MA; Garg N Mol Membr Biol; 2006; 23(3):209-25. PubMed ID: 16785205 [TBL] [Abstract][Full Text] [Related]
8. Defining the boundaries of species specificity for the Saccharomyces cerevisiae glycosylphosphatidylinositol transamidase using a quantitative in vivo assay. Morissette R; Varma Y; Hendrickson TL Biosci Rep; 2012 Dec; 32(6):577-86. PubMed ID: 22938202 [TBL] [Abstract][Full Text] [Related]
9. Amino acid conditions near the GPI anchor attachment site of prion protein for the conversion and the GPI anchoring. Hizume M; Kobayashi A; Mizusawa H; Kitamoto T Biochem Biophys Res Commun; 2010 Jan; 391(4):1681-6. PubMed ID: 20040362 [TBL] [Abstract][Full Text] [Related]
10. Statistical prediction of the locus of endoproteolytic cleavage of the nascent polypeptide in glycosylphosphatidylinositol-anchored proteins. Antony AC; Miller ME Biochem J; 1994 Feb; 298 ( Pt 1)(Pt 1):9-16. PubMed ID: 8129735 [TBL] [Abstract][Full Text] [Related]
11. How glycosylphosphatidylinositol-anchored membrane proteins are made. Udenfriend S; Kodukula K Annu Rev Biochem; 1995; 64():563-91. PubMed ID: 7574493 [TBL] [Abstract][Full Text] [Related]
12. Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine. Eisenhaber B; Eisenhaber S; Kwang TY; Grüber G; Eisenhaber F Cell Cycle; 2014; 13(12):1912-7. PubMed ID: 24743167 [TBL] [Abstract][Full Text] [Related]
13. Efficient glycosylphosphatidylinositol (GPI) modification of membrane proteins requires a C-terminal anchoring signal of marginal hydrophobicity. Galian C; Björkholm P; Bulleid N; von Heijne G J Biol Chem; 2012 May; 287(20):16399-409. PubMed ID: 22431723 [TBL] [Abstract][Full Text] [Related]
14. Sortase A-catalyzed transpeptidation of glycosylphosphatidylinositol derivatives for chemoenzymatic synthesis of GPI-anchored proteins. Wu Z; Guo X; Wang Q; Swarts BM; Guo Z J Am Chem Soc; 2010 Feb; 132(5):1567-71. PubMed ID: 20078124 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored membrane proteins in intact cells: specific amino acid requirements adjacent to the site of cleavage and GPI attachment. Kodukula K; Gerber LD; Amthauer R; Brink L; Udenfriend S J Cell Biol; 1993 Feb; 120(3):657-64. PubMed ID: 8425894 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of the C-terminal signal peptide of bovine liver 5'-nucleotidase for GPI anchoring: a study on the significance of the hydrophilic spacer region. Furukawa Y; Tsukamoto K; Ikezawa H Biochim Biophys Acta; 1997 Sep; 1328(2):185-96. PubMed ID: 9315615 [TBL] [Abstract][Full Text] [Related]
17. Recognition of the carboxyl-terminal signal for GPI modification requires translocation of its hydrophobic domain across the ER membrane. Wang J; Maziarz K; Ratnam M J Mol Biol; 1999 Mar; 286(5):1303-10. PubMed ID: 10064698 [TBL] [Abstract][Full Text] [Related]
18. Comparative efficiencies of C-terminal signals of native glycophosphatidylinositol (GPI)-anchored proproteins in conferring GPI-anchoring. Chen R; Knez JJ; Merrick WC; Medof ME J Cell Biochem; 2001; 84(1):68-83. PubMed ID: 11746517 [TBL] [Abstract][Full Text] [Related]
19. GPI transamidase and GPI anchored proteins: oncogenes and biomarkers for cancer. Gamage DG; Hendrickson TL Crit Rev Biochem Mol Biol; 2013; 48(5):446-64. PubMed ID: 23978072 [TBL] [Abstract][Full Text] [Related]
20. Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment. Masuishi Y; Kimura Y; Arakawa N; Hirano H J Proteomics; 2016 Apr; 139():77-83. PubMed ID: 26972028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]