BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9930975)

  • 1. Stereochemical constraints on the substrate specificity of phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1999 Jan; 38(4):1159-65. PubMed ID: 9930975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereochemical preferences for chiral substrates by the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Chem Biol Interact; 1999 May; 119-120():225-34. PubMed ID: 10421456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues.
    Chen-Goodspeed M; Sogorb MA; Wu F; Raushel FM
    Biochemistry; 2001 Feb; 40(5):1332-9. PubMed ID: 11170460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural determinants of the substrate and stereochemical specificity of phosphotriesterase.
    Chen-Goodspeed M; Sogorb MA; Wu F; Hong SB; Raushel FM
    Biochemistry; 2001 Feb; 40(5):1325-31. PubMed ID: 11170459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.
    Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM
    J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity.
    Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H
    Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereochemical specificity of organophosphorus acid anhydrolase toward p-nitrophenyl analogs of soman and sarin.
    Hill CM; Li WS; Cheng TC; DeFrank JJ; Raushel FM
    Bioorg Chem; 2001 Feb; 29(1):27-35. PubMed ID: 11300693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of phosphotriesterase within murine erythrocytes.
    Pei L; Omburo G; McGuinn WD; Petrikovics I; Dave K; Raushel FM; Wild JR; DeLoach JR; Way JL
    Toxicol Appl Pharmacol; 1994 Feb; 124(2):296-301. PubMed ID: 8122276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operational control of stereoselectivity during the enzymatic hydrolysis of racemic organophosphorus compounds.
    Li Y; Aubert SD; Raushel FM
    J Am Chem Soc; 2003 Jun; 125(25):7526-7. PubMed ID: 12812487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase.
    Lai K; Stolowich NJ; Wild JR
    Arch Biochem Biophys; 1995 Apr; 318(1):59-64. PubMed ID: 7726573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate and stereochemical specificity of the organophosphorus acid anhydrolase from Alteromonas sp. JD6.5 toward p-nitrophenyl phosphotriesters.
    Hill CM; Wu F; Cheng TC; DeFrank JJ; Raushel FM
    Bioorg Med Chem Lett; 2000 Jun; 10(11):1285-8. PubMed ID: 10866401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase.
    Lockridge O; Blong RM; Masson P; Froment MT; Millard CB; Broomfield CA
    Biochemistry; 1997 Jan; 36(4):786-95. PubMed ID: 9020776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminopeptidase p mediated detoxification of organophosphonate analogues of sarin: mechanistic and stereochemical study at the phosphorus atom of the substrate.
    Huang LF; Su B; Jao SC; Liu KT; Li WS
    Chembiochem; 2006 Mar; 7(3):506-14. PubMed ID: 16470765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate.
    Vanhooke JL; Benning MM; Raushel FM; Holden HM
    Biochemistry; 1996 May; 35(19):6020-5. PubMed ID: 8634243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbations to the active site of phosphotriesterase.
    Kuo JM; Chae MY; Raushel FM
    Biochemistry; 1997 Feb; 36(8):1982-8. PubMed ID: 9047295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselectivity of phosphotriesterase with paraoxon derivatives: a computational study.
    Zhan D; Guan S; Jin H; Han W; Wang S
    J Biomol Struct Dyn; 2016; 34(3):600-11. PubMed ID: 25929154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase.
    Aubert SD; Li Y; Raushel FM
    Biochemistry; 2004 May; 43(19):5707-15. PubMed ID: 15134445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of enantioselectivity of chiral organophosphate insecticide hydrolysis by bacterial phosphotriesterase.
    Tsugawa W; Nakamura H; Sode K; Ohuchi S
    Appl Biochem Biotechnol; 2000; 84-86():311-7. PubMed ID: 10849798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, in vitro pharmacology, and molecular modeling of very potent tacrine-huperzine A hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of Alzheimer's disease.
    Camps P; El Achab R; Görbig DM; Morral J; Muñoz-Torrero D; Badia A; Eladi Baños J; Vivas NM; Barril X; Orozco M; Luque FJ
    J Med Chem; 1999 Aug; 42(17):3227-42. PubMed ID: 10464010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.