These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 9930975)
1. Stereochemical constraints on the substrate specificity of phosphotriesterase. Hong SB; Raushel FM Biochemistry; 1999 Jan; 38(4):1159-65. PubMed ID: 9930975 [TBL] [Abstract][Full Text] [Related]
2. Stereochemical preferences for chiral substrates by the bacterial phosphotriesterase. Hong SB; Raushel FM Chem Biol Interact; 1999 May; 119-120():225-34. PubMed ID: 10421456 [TBL] [Abstract][Full Text] [Related]
3. Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues. Chen-Goodspeed M; Sogorb MA; Wu F; Raushel FM Biochemistry; 2001 Feb; 40(5):1332-9. PubMed ID: 11170460 [TBL] [Abstract][Full Text] [Related]
4. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB; Raushel FM Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883 [TBL] [Abstract][Full Text] [Related]
5. Structural determinants of the substrate and stereochemical specificity of phosphotriesterase. Chen-Goodspeed M; Sogorb MA; Wu F; Hong SB; Raushel FM Biochemistry; 2001 Feb; 40(5):1325-31. PubMed ID: 11170459 [TBL] [Abstract][Full Text] [Related]
6. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library. Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402 [TBL] [Abstract][Full Text] [Related]
7. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity. Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656 [TBL] [Abstract][Full Text] [Related]
8. Stereochemical specificity of organophosphorus acid anhydrolase toward p-nitrophenyl analogs of soman and sarin. Hill CM; Li WS; Cheng TC; DeFrank JJ; Raushel FM Bioorg Chem; 2001 Feb; 29(1):27-35. PubMed ID: 11300693 [TBL] [Abstract][Full Text] [Related]
9. Encapsulation of phosphotriesterase within murine erythrocytes. Pei L; Omburo G; McGuinn WD; Petrikovics I; Dave K; Raushel FM; Wild JR; DeLoach JR; Way JL Toxicol Appl Pharmacol; 1994 Feb; 124(2):296-301. PubMed ID: 8122276 [TBL] [Abstract][Full Text] [Related]
10. Operational control of stereoselectivity during the enzymatic hydrolysis of racemic organophosphorus compounds. Li Y; Aubert SD; Raushel FM J Am Chem Soc; 2003 Jun; 125(25):7526-7. PubMed ID: 12812487 [TBL] [Abstract][Full Text] [Related]
11. Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase. Lai K; Stolowich NJ; Wild JR Arch Biochem Biophys; 1995 Apr; 318(1):59-64. PubMed ID: 7726573 [TBL] [Abstract][Full Text] [Related]
12. Substrate and stereochemical specificity of the organophosphorus acid anhydrolase from Alteromonas sp. JD6.5 toward p-nitrophenyl phosphotriesters. Hill CM; Wu F; Cheng TC; DeFrank JJ; Raushel FM Bioorg Med Chem Lett; 2000 Jun; 10(11):1285-8. PubMed ID: 10866401 [TBL] [Abstract][Full Text] [Related]
13. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase. Lockridge O; Blong RM; Masson P; Froment MT; Millard CB; Broomfield CA Biochemistry; 1997 Jan; 36(4):786-95. PubMed ID: 9020776 [TBL] [Abstract][Full Text] [Related]
14. Aminopeptidase p mediated detoxification of organophosphonate analogues of sarin: mechanistic and stereochemical study at the phosphorus atom of the substrate. Huang LF; Su B; Jao SC; Liu KT; Li WS Chembiochem; 2006 Mar; 7(3):506-14. PubMed ID: 16470765 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Vanhooke JL; Benning MM; Raushel FM; Holden HM Biochemistry; 1996 May; 35(19):6020-5. PubMed ID: 8634243 [TBL] [Abstract][Full Text] [Related]
16. Perturbations to the active site of phosphotriesterase. Kuo JM; Chae MY; Raushel FM Biochemistry; 1997 Feb; 36(8):1982-8. PubMed ID: 9047295 [TBL] [Abstract][Full Text] [Related]
17. Stereoselectivity of phosphotriesterase with paraoxon derivatives: a computational study. Zhan D; Guan S; Jin H; Han W; Wang S J Biomol Struct Dyn; 2016; 34(3):600-11. PubMed ID: 25929154 [TBL] [Abstract][Full Text] [Related]
18. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Aubert SD; Li Y; Raushel FM Biochemistry; 2004 May; 43(19):5707-15. PubMed ID: 15134445 [TBL] [Abstract][Full Text] [Related]
19. Improvement of enantioselectivity of chiral organophosphate insecticide hydrolysis by bacterial phosphotriesterase. Tsugawa W; Nakamura H; Sode K; Ohuchi S Appl Biochem Biotechnol; 2000; 84-86():311-7. PubMed ID: 10849798 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, in vitro pharmacology, and molecular modeling of very potent tacrine-huperzine A hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of Alzheimer's disease. Camps P; El Achab R; Görbig DM; Morral J; Muñoz-Torrero D; Badia A; Eladi Baños J; Vivas NM; Barril X; Orozco M; Luque FJ J Med Chem; 1999 Aug; 42(17):3227-42. PubMed ID: 10464010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]