BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 9930983)

  • 21. Protein-coenzyme interactions in adenosylcobalamin-dependent glutamate mutase.
    Huhta MS; Chen HP; Hemann C; Hille CR; Marsh EN
    Biochem J; 2001 Apr; 355(Pt 1):131-7. PubMed ID: 11256957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of 3'-[3H]2'-Chloro-2'-deoxyuridine 5'-triphosphate with ribonucleotide reductase from Lactobacillus leichmannii.
    Stubbe J; Smith G; Blakley RL
    J Biol Chem; 1983 Feb; 258(3):1619-24. PubMed ID: 6337141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entropic origin of cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase.
    Wang M; Warncke K
    J Am Chem Soc; 2013 Oct; 135(40):15077-84. PubMed ID: 24028405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for adenosylcobalamin activation in AdoCbl-dependent ribonucleotide reductases.
    Larsson KM; Logan DT; Nordlund P
    ACS Chem Biol; 2010 Oct; 5(10):933-42. PubMed ID: 20672854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR observations of 13C-enriched coenzyme B12 bound to the ribonucleotide reductase from Lactobacillus leichmannii.
    Brown KL; Li J; Zou X
    Inorg Chem; 2006 Nov; 45(23):9172-4. PubMed ID: 17083212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of B12-dependent ribonucleotide reductase.
    Stubbe JA
    Mol Cell Biochem; 1983; 50(1):25-45. PubMed ID: 6341812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of Lactobacillus leichmannii ribonucleotide reductase by 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate: adenosylcobalamin destruction and formation of a nucleotide-based radical.
    Lohman GJ; Gerfen GJ; Stubbe J
    Biochemistry; 2010 Feb; 49(7):1396-403. PubMed ID: 20088568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mobile loop dynamics in adenosyltransferase control binding and reactivity of coenzyme B
    Mascarenhas R; Ruetz M; McDevitt L; Koutmos M; Banerjee R
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30412-30422. PubMed ID: 33199623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cobalamin-dependent methionine synthase: probing the role of the axial base in catalysis of methyl transfer between methyltetrahydrofolate and exogenous cob(I)alamin or cob(I)inamide.
    Dorweiler JS; Finke RG; Matthews RG
    Biochemistry; 2003 Dec; 42(49):14653-62. PubMed ID: 14661978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radical mechanisms in adenosylcobalamin-dependent enzymes.
    Reed GH
    Curr Opin Chem Biol; 2004 Oct; 8(5):477-83. PubMed ID: 15450489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photolysis and recombination of adenosylcobalamin bound to glutamate mutase.
    Sension RJ; Cole AG; Harris AD; Fox CC; Woodbury NW; Lin S; Marsh EN
    J Am Chem Soc; 2004 Feb; 126(6):1598-9. PubMed ID: 14871067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isotope effects for deuterium transfer between substrate and coenzyme in adenosylcobalamin-dependent glutamate mutase.
    Cheng MC; Marsh EN
    Biochemistry; 2005 Feb; 44(7):2686-91. PubMed ID: 15709782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dioldehydrase: an essential role for potassium ion in the homolytic cleavage of the cobalt-carbon bond in adenosylcobalamin.
    Schwartz PA; Frey PA
    Biochemistry; 2007 Jun; 46(24):7293-301. PubMed ID: 17516630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of active site residues in promoting cobalt-carbon bond homolysis in adenosylcobalamin-dependent mutases revealed through experiment and computation.
    Román-Meléndez GD; von Glehn P; Harvey JN; Mulholland AJ; Marsh EN
    Biochemistry; 2014 Jan; 53(1):169-77. PubMed ID: 24341954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanism of Lactobacillus leichmannii ribonucleotide reductase. Evidence for 3' carbon-hydrogen bond cleavage and a unique role for coenzyme B12.
    Ashley GW; Harris G; Stubbe J
    J Biol Chem; 1986 Mar; 261(9):3958-64. PubMed ID: 3512563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning, sequencing, and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii.
    Booker S; Stubbe J
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8352-6. PubMed ID: 8397403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photolysis of adenosylcobalamin and radical pair recombination in ethanolamine ammonia-lyase probed on the micro- to millisecond time scale by using time-resolved optical absorption spectroscopy.
    Robertson WD; Warncke K
    Biochemistry; 2009 Jan; 48(1):140-7. PubMed ID: 19072291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rotary mechanism for coenzyme B(12) synthesis by adenosyltransferase.
    Padovani D; Banerjee R
    Biochemistry; 2009 Jun; 48(23):5350-7. PubMed ID: 19413290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and enzymatic studies of a new analogue of coenzyme B12 with an alpha-adenosyl upper axial ligand.
    Brown KL; Cheng S; Zou X; Li J; Chen G; Valente EJ; Zubkowski JD; Marques HM
    Biochemistry; 1998 Jul; 37(27):9704-15. PubMed ID: 9657683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational insights into the mechanism of radical generation in B12-dependent methylmalonyl-CoA mutase.
    Kwiecien RA; Khavrutskii IV; Musaev DG; Morokuma K; Banerjee R; Paneth P
    J Am Chem Soc; 2006 Feb; 128(4):1287-92. PubMed ID: 16433547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.