These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 9930995)
1. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the Thermophile thermus thermophilus and its mesophilic counterpart from Escherichia coli. Motono C; Yamagishi A; Oshima T Biochemistry; 1999 Jan; 38(4):1332-7. PubMed ID: 9930995 [TBL] [Abstract][Full Text] [Related]
2. High thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus resulting from low DeltaC(p) of unfolding. Motono C; Oshima T; Yamagishi A Protein Eng; 2001 Dec; 14(12):961-6. PubMed ID: 11809926 [TBL] [Abstract][Full Text] [Related]
3. A stable intermediate in the thermal unfolding process of a chimeric 3-isopropylmalate dehydrogenase between a thermophilic and a mesophilic enzymes. Hayashi-Iwasaki Y; Numata K; Yamagishi A; Yutani K; Sakurai M; Tanaka N; Oshima T Protein Sci; 1996 Mar; 5(3):511-6. PubMed ID: 8868488 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278 [TBL] [Abstract][Full Text] [Related]
5. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases. Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729 [TBL] [Abstract][Full Text] [Related]
6. Modeling substrate binding in Thermus thermophilus isopropylmalate dehydrogenase. Zhang T; Koshland DE Protein Sci; 1995 Jan; 4(1):84-92. PubMed ID: 7773180 [TBL] [Abstract][Full Text] [Related]
7. Purification, catalytic properties and thermostability of 3-isopropylmalate dehydrogenase from Escherichia coli. Wallon G; Yamamoto K; Kirino H; Yamagishi A; Lovett ST; Petsko GA; Oshima T Biochim Biophys Acta; 1997 Jan; 1337(1):105-12. PubMed ID: 9003442 [TBL] [Abstract][Full Text] [Related]
8. Cold adaptation of the thermophilic enzyme 3-isopropylmalate dehydrogenase. Yasugi M; Amino M; Suzuki T; Oshima T; Yamagishi A J Biochem; 2001 Mar; 129(3):477-84. PubMed ID: 11226889 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: spectroscopic description of the native, intermediate, and unfolded states. Nallamsetty S; Dubey VK; Pande M; Ambasht PK; Jagannadham MV Biochimie; 2007 Nov; 89(11):1416-24. PubMed ID: 17658212 [TBL] [Abstract][Full Text] [Related]
10. Symmetrical refolding of protein domains and subunits: example of the dimeric two-domain 3-isopropylmalate dehydrogenases. Gráczer E; Varga A; Melnik B; Semisotnov G; Závodszky P; Vas M Biochemistry; 2009 Feb; 48(5):1123-34. PubMed ID: 19154118 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H. Hollien J; Marqusee S J Mol Biol; 2002 Feb; 316(2):327-40. PubMed ID: 11851342 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus. Kirino H; Aoki M; Aoshima M; Hayashi Y; Ohba M; Yamagishi A; Wakagi T; Oshima T Eur J Biochem; 1994 Feb; 220(1):275-81. PubMed ID: 8119295 [TBL] [Abstract][Full Text] [Related]
13. Relationship between thermal stability and 3-D structure in a homology model of 3-isopropylmalate dehydrogenase from Escherichia coli. Magyar C; Szilágyi A; Závodszky P Protein Eng; 1996 Aug; 9(8):663-70. PubMed ID: 8875643 [TBL] [Abstract][Full Text] [Related]
14. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Závodszky P; Kardos J; Svingor ; Petsko GA Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7406-11. PubMed ID: 9636162 [TBL] [Abstract][Full Text] [Related]
15. Conformational plasticity of cryptolepain: accumulation of partially unfolded states in denaturants induced equilibrium unfolding. Pande M; Dubey VK; Sahu V; Jagannadham MV J Biotechnol; 2007 Sep; 131(4):404-17. PubMed ID: 17825936 [TBL] [Abstract][Full Text] [Related]
16. A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs. Svingor A; Kardos J; Hajdú I; Németh A; Závodszky P J Biol Chem; 2001 Jul; 276(30):28121-5. PubMed ID: 11369782 [TBL] [Abstract][Full Text] [Related]
17. Purification, catalytic properties, and thermal stability of threo-Ds-3-isopropylmalate dehydrogenase coded by leuB gene from an extreme thermophile, Thermus thermophilus strain HB8. Yamada T; Akutsu N; Miyazaki K; Kakinuma K; Yoshida M; Oshima T J Biochem; 1990 Sep; 108(3):449-56. PubMed ID: 2277037 [TBL] [Abstract][Full Text] [Related]
18. The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization. Hansen T; Urbanke C; Leppänen VM; Goldman A; Brandenburg K; Schäfer G Arch Biochem Biophys; 1999 Mar; 363(1):135-47. PubMed ID: 10049508 [TBL] [Abstract][Full Text] [Related]
19. The effects of multiple ancestral residues on the Thermus thermophilus 3-isopropylmalate dehydrogenase. Watanabe K; Yamagishi A FEBS Lett; 2006 Jul; 580(16):3867-71. PubMed ID: 16797545 [TBL] [Abstract][Full Text] [Related]
20. Characterization of L-glutamine:D-fructose-6-phosphate amidotransferase from an extreme thermophile Thermus thermophilus HB8. Badet-Denisot MA; Fernandez-Herrero LA; Berenguer J; Ooi T; Badet B Arch Biochem Biophys; 1997 Jan; 337(1):129-36. PubMed ID: 8990277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]