These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9931096)

  • 21. [Adaptation of resistance vessels to the transmural pressure level].
    Rodionov IM; Tarasova OS; Koshelev VB
    Ross Fiziol Zh Im I M Sechenova; 2001 Nov; 87(11):1477-87. PubMed ID: 11816279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Power dissipation as a measure of peripheral resistance in vascular networks.
    Borders JL; Granger HJ
    Hypertension; 1986 Mar; 8(3):184-91. PubMed ID: 3949373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow-mediated vascular remodeling in hypertension: relation to hemodyamics.
    Ibrahim J; Berk BC
    Stroke; 2009 Feb; 40(2):582-90. PubMed ID: 19095986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The present status of the autoregulation theory of the pathogenesis of hypertension.
    Korner PI
    Clin Exp Pharmacol Physiol; 1980; 7(5):521-6. PubMed ID: 7449194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and function of the arteries in hypertension.
    Folkow B
    Am Heart J; 1987 Oct; 114(4 Pt 2):938-48. PubMed ID: 3661386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemodynamic characteristics of the intestinal microcirculation in renal hypertension.
    Meininger GA; Fehr KL; Yates MB; Borders JL; Granger HJ
    Hypertension; 1986 Jan; 8(1):66-75. PubMed ID: 3943888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shear stress is not sufficient to control growth of vascular networks: a model study.
    Hacking WJ; VanBavel E; Spaan JA
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H364-75. PubMed ID: 8769773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of moderate hypoxia, hypercapnia and acidosis on haemodynamic changes induced by endothelin-1 in the pithed rat.
    MacLean MR; Randall MD; Hiley CR
    Br J Pharmacol; 1989 Nov; 98(3):1055-65. PubMed ID: 2511990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats.
    Harper SL; Bohlen HG
    Hypertension; 1984; 6(3):408-19. PubMed ID: 6735460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling structural adaptation of microcirculation.
    Pries AR; Secomb TW
    Microcirculation; 2008 Nov; 15(8):753-64. PubMed ID: 18802843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intussusceptive angiogenesis: pillars against the blood flow.
    Styp-Rekowska B; Hlushchuk R; Pries AR; Djonov V
    Acta Physiol (Oxf); 2011 Jul; 202(3):213-23. PubMed ID: 21535415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic vessel adaptation in synthetic arteriovenous networks.
    Fredrich T; Welter M; Rieger H
    J Theor Biol; 2019 Dec; 483():109989. PubMed ID: 31479662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo.
    Van Gieson EJ; Murfee WL; Skalak TC; Price RJ
    Circ Res; 2003 May; 92(8):929-36. PubMed ID: 12663481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model of structural and functional adaptation of small conductance vessels to arterial hypotension.
    Quick CM; Young WL; Leonard EF; Joshi S; Gao E; Hashimoto T
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1645-53. PubMed ID: 11009451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Structural autoregulation" of blood flow and GFR in the two renal vascular beds from two-kidney, one-clip renal hypertensive rats, as compared with kidneys from uni-nephrectomized and intact normotensive rats.
    Göthberg G; Folkow B
    Acta Physiol Scand; 1983 Jun; 118(2):141-8. PubMed ID: 6624501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical comparison of wall-derived and erythrocyte-derived mechanisms for metabolic flow regulation in heterogeneous microvascular networks.
    Roy TK; Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H1945-52. PubMed ID: 22408023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of regional vascular responses to whole body autoregulation in conscious areflexic rats.
    Hinojosa-Laborde C; Frohlich BH; Cowley AW
    Hypertension; 1991 Jun; 17(6 Pt 2):1078-84. PubMed ID: 2045152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural adaptation and heterogeneity of normal and tumor microvascular networks.
    Pries AR; Cornelissen AJ; Sloot AA; Hinkeldey M; Dreher MR; Höpfner M; Dewhirst MW; Secomb TW
    PLoS Comput Biol; 2009 May; 5(5):e1000394. PubMed ID: 19478883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of blood vessel structure: insights from theoretical models.
    Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1010-5. PubMed ID: 15706037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.