These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9931193)

  • 1. Structure-function relationships in the pulmonary arterial tree.
    Dawson CA; Krenz GS; Karau KL; Haworth ST; Hanger CC; Linehan JH
    J Appl Physiol (1985); 1999 Feb; 86(2):569-83. PubMed ID: 9931193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular tree structure affects lung blood flow heterogeneity simulated in three dimensions.
    Parker JC; Cave CB; Ardell JL; Hamm CR; Williams SG
    J Appl Physiol (1985); 1997 Oct; 83(4):1370-82. PubMed ID: 9338448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of parallel heterogeneity on a continuum model of the pulmonary arterial tree.
    Krenz GS; Lin J; Dawson CA; Linehan JH
    J Appl Physiol (1985); 1994 Aug; 77(2):660-70. PubMed ID: 8002512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach to blood flow simulation in vascular networks.
    Tamaddon H; Behnia M; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2016; 19(6):673-85. PubMed ID: 26195135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels.
    Burrowes KS; Hunter PJ; Tawhai MH
    J Appl Physiol (1985); 2005 Aug; 99(2):731-8. PubMed ID: 15802366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fractal continuum model of the pulmonary arterial tree.
    Krenz GS; Linehan JH; Dawson CA
    J Appl Physiol (1985); 1992 Jun; 72(6):2225-37. PubMed ID: 1629077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation of geometry and hemodynamics of canine pulmonary arteries.
    Onuki T; Nitta S
    Ann Biomed Eng; 1993; 21(2):107-15. PubMed ID: 8484559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vessel distensibility and flow distribution in vascular trees.
    Krenz GS; Dawson CA
    J Math Biol; 2002 Apr; 44(4):360-74. PubMed ID: 11984645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transit time dispersion in the pulmonary arterial tree.
    Clough AV; Haworth ST; Hanger CC; Wang J; Roerig DL; Linehan JH; Dawson CA
    J Appl Physiol (1985); 1998 Aug; 85(2):565-74. PubMed ID: 9688734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous mechanics of the mouse pulmonary arterial network.
    Lee P; Carlson BE; Chesler N; Olufsen MS; Qureshi MU; Smith NP; Sochi T; Beard DA
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1245-61. PubMed ID: 26792789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular impedance analysis in dog lung with detailed morphometric and elasticity data.
    Gan RZ; Yen RT
    J Appl Physiol (1985); 1994 Aug; 77(2):706-17. PubMed ID: 8002518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamics of the right ventricular outflow tract and of the pulmonary artery: a bench model of flow dynamics.
    Mosbahi S; Mickaily-Huber E; Charbonnier D; Hullin R; Burki M; Ferrari E; von Segesser LK; Berdajs DA
    Interact Cardiovasc Thorac Surg; 2014 Oct; 19(4):611-6. PubMed ID: 24948576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lung inflation distends small arteries (< 1 mm) in excised dog lungs.
    Albert RK; Lamm WJ; Rickaby DA; al-Tinawi A; Dawson CA
    J Appl Physiol (1985); 1993 Dec; 75(6):2595-601. PubMed ID: 8125879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational predictions of pulmonary blood flow gradients: gravity versus structure.
    Burrowes KS; Tawhai MH
    Respir Physiol Neurobiol; 2006 Dec; 154(3):515-23. PubMed ID: 16386472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDCT-based quantification of porcine pulmonary arterial morphometry and self-similarity of arterial branching geometry.
    Lee YC; Clark AR; Fuld MK; Haynes S; Divekar AA; Hoffman EA; Tawhai MH
    J Appl Physiol (1985); 2013 May; 114(9):1191-201. PubMed ID: 23449941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphometry of the dog pulmonary venous tree.
    Gan RZ; Tian Y; Yen RT; Kassab GS
    J Appl Physiol (1985); 1993 Jul; 75(1):432-40. PubMed ID: 8376295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear stress distribution in arterial tree models, generated by constrained constructive optimization.
    Schreiner W; Neumann F; Karch R; Neumann M; Roedler SM; End A
    J Theor Biol; 1999 May; 198(1):27-45. PubMed ID: 10329113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site of recruitment in the pulmonary microcirculation.
    Hanson WL; Emhardt JD; Bartek JP; Latham LP; Checkley LL; Capen RL; Wagner WW
    J Appl Physiol (1985); 1989 May; 66(5):2079-83. PubMed ID: 2745276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cat lung hemodynamics: comparison of experimental results and model predictions.
    Krishnan A; Linehan JH; Rickaby DA; Dawson CA
    J Appl Physiol (1985); 1986 Dec; 61(6):2023-34. PubMed ID: 3804911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.