BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9931249)

  • 21. Role of the first aspartate residue of the "YxDTDS" motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis.
    Saturno J; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 1998 Oct; 283(3):633-42. PubMed ID: 9784372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases.
    de Vega M; Lazaro JM; Salas M; Blanco L
    EMBO J; 1996 Mar; 15(5):1182-92. PubMed ID: 8605889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide.
    Truniger V; Lázaro JM; Esteban FJ; Blanco L; Salas M
    Nucleic Acids Res; 2002 Apr; 30(7):1483-92. PubMed ID: 11917008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential functional behavior of viral phi29, Nf and GA-1 SSB proteins.
    Gascón I; Lázaro JM; Salas M
    Nucleic Acids Res; 2000 May; 28(10):2034-42. PubMed ID: 10773070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific recognition of parental terminal protein by DNA polymerase for initiation of protein-primed DNA replication.
    Gonzalez-Huici V; Lázaro JM; Salas M; Hermoso JM
    J Biol Chem; 2000 May; 275(19):14678-83. PubMed ID: 10799555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Loop of the TPR1 Subdomain of Phi29 DNA Polymerase Plays a Pivotal Role in Primer-Terminus Stabilization at the Polymerization Active Site.
    Del Prado A; Santos E; Lázaro JM; Salas M; de Vega M
    Biomolecules; 2019 Oct; 9(11):. PubMed ID: 31653090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phi29 DNA polymerase residues Tyr59, His61 and Phe69 of the highly conserved ExoII motif are essential for interaction with the terminal protein.
    Eisenbrandt R; Lázaro JM; Salas M; de Vega M
    Nucleic Acids Res; 2002 Mar; 30(6):1379-86. PubMed ID: 11884636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of phi29 DNA polymerase thumb subdomain in the proper coordination of synthesis and degradation during DNA replication.
    Pérez-Arnaiz P; Lázaro JM; Salas M; de Vega M
    Nucleic Acids Res; 2006; 34(10):3107-15. PubMed ID: 16757576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of the TPR2 subdomain movement in the activities of phi29 DNA polymerase.
    Rodríguez I; Lázaro JM; Salas M; de Vega M
    Nucleic Acids Res; 2009 Jan; 37(1):193-203. PubMed ID: 19033368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of residues of the 29 terminal protein intermediate and priming domains in the formation of a stable and functional heterodimer with the replicative DNA polymerase.
    del Prado A; Villar L; de Vega M; Salas M
    Nucleic Acids Res; 2012 May; 40(9):3886-97. PubMed ID: 22210885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and functional studies on phi 29 DNA polymerase.
    Blasco MA; Esteban JA; Méndez J; Blanco L; Salas M
    Chromosoma; 1992; 102(1 Suppl):S32-8. PubMed ID: 1291240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication.
    Illana B; Blanco L; Salas M
    J Mol Biol; 1996 Dec; 264(3):453-64. PubMed ID: 8969297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The phi29 DNA polymerase:protein-primer structure suggests a model for the initiation to elongation transition.
    Kamtekar S; Berman AJ; Wang J; Lázaro JM; de Vega M; Blanco L; Salas M; Steitz TA
    EMBO J; 2006 Mar; 25(6):1335-43. PubMed ID: 16511564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Initiation of bacteriophage phi29 DNA replication in vivo: assembly of a membrane-associated multiprotein complex.
    Bravo A; Salas M
    J Mol Biol; 1997 May; 269(1):102-12. PubMed ID: 9193003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.
    Salas M; Holguera I; Redrejo-Rodríguez M; de Vega M
    Front Mol Biosci; 2016; 3():37. PubMed ID: 27547754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The (I/Y)XGG motif of adenovirus DNA polymerase affects template DNA binding and the transition from initiation to elongation.
    Brenkman AB; Heideman MR; Truniger V; Salas M; van der Vliet PC
    J Biol Chem; 2001 Aug; 276(32):29846-53. PubMed ID: 11390396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase.
    de Vega M; Blanco L; Salas M
    J Mol Biol; 1999 Sep; 292(1):39-51. PubMed ID: 10493855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phi 29 DNA polymerase active site. The conserved amino acid motif "Kx3NSxYG" is involved in template-primer binding and dNTP selection.
    Blasco MA; Lázaro JM; Blanco L; Salas M
    J Biol Chem; 1993 Aug; 268(22):16763-70. PubMed ID: 8344956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compartmentalization of phage phi29 DNA replication: interaction between the primer terminal protein and the membrane-associated protein p1.
    Bravo A; Illana B; Salas M
    EMBO J; 2000 Oct; 19(20):5575-84. PubMed ID: 11032825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29.
    Kamtekar S; Berman AJ; Wang J; Lázaro JM; de Vega M; Blanco L; Salas M; Steitz TA
    Mol Cell; 2004 Nov; 16(4):609-18. PubMed ID: 15546620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.