These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 9931250)
1. The effect of a hydrophobic N-terminal probe on translational pausing of chloramphenicol acetyl transferase and rhodanese. Tsalkova T; Kramer G; Hardesty B J Mol Biol; 1999 Feb; 286(1):71-81. PubMed ID: 9931250 [TBL] [Abstract][Full Text] [Related]
2. Different conformations of nascent peptides on ribosomes. Tsalkova T; Odom OW; Kramer G; Hardesty B J Mol Biol; 1998 May; 278(4):713-23. PubMed ID: 9614937 [TBL] [Abstract][Full Text] [Related]
3. Fluorophores at the N terminus of nascent chloramphenicol acetyltransferase peptides affect translation and movement through the ribosome. Ramachandiran V; Willms C; Kramer G; Hardesty B J Biol Chem; 2000 Jan; 275(3):1781-6. PubMed ID: 10636875 [TBL] [Abstract][Full Text] [Related]
4. The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Kramer G; Ramachandiran V; Horowitz PM; Hardesty B Arch Biochem Biophys; 2002 Jul; 403(1):63-70. PubMed ID: 12061803 [TBL] [Abstract][Full Text] [Related]
5. Chaperone-dependent folding and activation of ribosome-bound nascent rhodanese. Analysis by fluorescence. Kudlicki W; Odom OW; Kramer G; Hardesty B J Mol Biol; 1994 Dec; 244(3):319-31. PubMed ID: 7966342 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of the release factor-dependent termination reaction on ribosomes by DnaJ and the N-terminal peptide of rhodanese. Kudlicki W; Odom OW; Merrill G; Kramer G; Hardesty B J Bacteriol; 1995 Oct; 177(19):5517-22. PubMed ID: 7559337 [TBL] [Abstract][Full Text] [Related]
9. Single synonymous codon substitution eliminates pausing during chloramphenicol acetyl transferase synthesis on Escherichia coli ribosomes in vitro. Ramachandiran V; Kramer G; Horowitz PM; Hardesty B FEBS Lett; 2002 Feb; 512(1-3):209-12. PubMed ID: 11852081 [TBL] [Abstract][Full Text] [Related]
10. An additional serine residue at the C terminus of rhodanese destabilizes the enzyme. Kramer G; Ramachandiran V; Horowitz P; Hardesty B Arch Biochem Biophys; 2001 Jan; 385(2):332-7. PubMed ID: 11368014 [TBL] [Abstract][Full Text] [Related]
11. N-terminal and C-terminal modifications affect folding, release from the ribosomes and stability of in vitro synthesized proteins. Kramer G; Kudlicki W; McCarthy D; Tsalkova T; Simmons D; Hardesty B Int J Biochem Cell Biol; 1999 Jan; 31(1):231-41. PubMed ID: 10216956 [TBL] [Abstract][Full Text] [Related]
12. The importance of the N-terminal segment for DnaJ-mediated folding of rhodanese while bound to ribosomes as peptidyl-tRNA. Kudlicki W; Odom OW; Kramer G; Hardesty B; Merrill GA; Horowitz PM J Biol Chem; 1995 May; 270(18):10650-7. PubMed ID: 7738002 [TBL] [Abstract][Full Text] [Related]
13. The cell-free protein biosynthesis--applications and analysis of the system. Lamla T; Mammeri K; Erdmann VA Acta Biochim Pol; 2001; 48(2):453-65. PubMed ID: 11732615 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence characterization of the environment encountered by nascent polyalanine and polyserine as they exit Escherichia coli ribosomes during translation. Picking WD; Picking WL; Odom OW; Hardesty B Biochemistry; 1992 Mar; 31(8):2368-75. PubMed ID: 1540593 [TBL] [Abstract][Full Text] [Related]
15. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. Fulle S; Gohlke H J Mol Biol; 2009 Mar; 387(2):502-17. PubMed ID: 19356596 [TBL] [Abstract][Full Text] [Related]
16. Investigating the in vivo activity of the DeaD protein using protein-protein interactions and the translational activity of structured chloramphenicol acetyltransferase mRNAs. Butland G; Krogan NJ; Xu J; Yang WH; Aoki H; Li JS; Krogan N; Menendez J; Cagney G; Kiani GC; Jessulat MG; Datta N; Ivanov I; Abouhaidar MG; Emili A; Greenblatt J; Ganoza MC; Golshani A J Cell Biochem; 2007 Feb; 100(3):642-52. PubMed ID: 16983699 [TBL] [Abstract][Full Text] [Related]
17. Translation initiation by using various N-acylaminoacyl tRNAs. Goto Y; Ashigai H; Sako Y; Murakami H; Suga H Nucleic Acids Symp Ser (Oxf); 2006; (50):293-4. PubMed ID: 17150933 [TBL] [Abstract][Full Text] [Related]
18. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes. Delgado-Olivares L; Zamora-Romo E; Guarneros G; Hernandez-Sanchez J Biochimie; 2006 Jul; 88(7):793-800. PubMed ID: 16488066 [TBL] [Abstract][Full Text] [Related]
19. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104 [TBL] [Abstract][Full Text] [Related]
20. Activation and release of enzymatically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA. Kudlicki W; Odom OW; Kramer G; Hardesty B J Biol Chem; 1994 Jun; 269(24):16549-53. PubMed ID: 8206970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]