These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9931255)

  • 61. Structure of the heme d of Penicillium vitale and Escherichia coli catalases.
    Murshudov GN; Grebenko AI; Barynin V; Dauter Z; Wilson KS; Vainshtein BK; Melik-Adamyan W; Bravo J; Ferrán JM; Ferrer JC; Switala J; Loewen PC; Fita I
    J Biol Chem; 1996 Apr; 271(15):8863-8. PubMed ID: 8621527
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enzymatic characterization of Catalase from Bacillus anthracis and prediction of critical residues using information theoretic measure of Relative Entropy.
    Rahi A; Rehan M; Garg R; Tripathi D; Lynn AM; Bhatnagar R
    Biochem Biophys Res Commun; 2011 Jul; 411(1):88-95. PubMed ID: 21723851
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of the site of oxidase substrate binding in Scytalidium thermophilum catalase.
    Yuzugullu Karakus Y; Goc G; Balci S; Yorke BA; Trinh CH; McPherson MJ; Pearson AR
    Acta Crystallogr D Struct Biol; 2018 Oct; 74(Pt 10):979-985. PubMed ID: 30289408
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparison of beef liver and Penicillium vitale catalases.
    Melik-Adamyan WR; Barynin VV; Vagin AA; Borisov VV; Vainshtein BK; Fita I; Murthy MR; Rossmann MG
    J Mol Biol; 1986 Mar; 188(1):63-72. PubMed ID: 3712444
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of main channel structure on H(2)O(2) access to the heme cavity of catalase KatE of Escherichia coli.
    Jha V; Chelikani P; Carpena X; Fita I; Loewen PC
    Arch Biochem Biophys; 2012 Oct; 526(1):54-9. PubMed ID: 22820098
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Formation of a tyrosyl radical intermediate in Proteus mirabilis catalase by directed mutagenesis and consequences for nucleotide reactivity.
    Andreoletti P; Gambarelli S; Sainz G; Stojanoff V; White C; Desfonds G; Gagnon J; Gaillard J; Jouve HM
    Biochemistry; 2001 Nov; 40(45):13734-43. PubMed ID: 11695923
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Theoretical study of the mechanisms of substrate recognition by catalase.
    Kalko SG; Gelpí JL; Fita I; Orozco M
    J Am Chem Soc; 2001 Oct; 123(39):9665-72. PubMed ID: 11572688
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The structure and peroxidase activity of a 33-kDa catalase-related protein from Mycobacterium avium ssp. paratuberculosis.
    Pakhomova S; Gao B; Boeglin WE; Brash AR; Newcomer ME
    Protein Sci; 2009 Dec; 18(12):2559-68. PubMed ID: 19827095
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Probing the structure of catalase HPII of Escherichia coli--a review.
    Loewen P
    Gene; 1996 Nov; 179(1):39-44. PubMed ID: 8955627
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An electrical potential in the access channel of catalases enhances catalysis.
    Chelikani P; Carpena X; Fita I; Loewen PC
    J Biol Chem; 2003 Aug; 278(33):31290-6. PubMed ID: 12777389
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Homogenates of yeast cultures with engineered catalases F148V and V111A reveal higher specific activities after incubation at permissive temperature.
    Zámocký M; Koller F
    Folia Microbiol (Praha); 1997; 42(5):457-62. PubMed ID: 9438348
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Three-dimensional structure of catalase from Penicillium vitale at 2.0 A resolution.
    Vainshtein BK; Melik-Adamyan WR; Barynin VV; Vagin AA; Grebenko AI; Borisov VV; Bartels KS; Fita I; Rossmann MG
    J Mol Biol; 1986 Mar; 188(1):49-61. PubMed ID: 3712443
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 A resolution.
    Murshudov GN; Melik-Adamyan WR; Grebenko AI; Barynin VV; Vagin AA; Vainshtein BK; Dauter Z; Wilson KS
    FEBS Lett; 1992 Nov; 312(2-3):127-31. PubMed ID: 1426241
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structure and functional properties of the cold-adapted catalase from Acinetobacter sp. Ver3 native to the Atacama plateau in northern Argentina.
    Sartorio MG; Cortez N; González JM
    Acta Crystallogr D Struct Biol; 2021 Mar; 77(Pt 3):369-379. PubMed ID: 33645540
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Crystal structure of manganese catalase from Lactobacillus plantarum.
    Barynin VV; Whittaker MM; Antonyuk SV; Lamzin VS; Harrison PM; Artymiuk PJ; Whittaker JW
    Structure; 2001 Aug; 9(8):725-38. PubMed ID: 11587647
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis.
    Zámocký M; Koller F
    Prog Biophys Mol Biol; 1999; 72(1):19-66. PubMed ID: 10446501
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy.
    Gouet P; Jouve HM; Williams PA; Andersson I; Andreoletti P; Nussaume L; Hajdu J
    Nat Struct Biol; 1996 Nov; 3(11):951-6. PubMed ID: 8901874
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Non-heme manganese catalase--the 'other' catalase.
    Whittaker JW
    Arch Biochem Biophys; 2012 Sep; 525(2):111-20. PubMed ID: 22198285
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The 2.2 Å resolution structure of the catalase-peroxidase KatG from Synechococcus elongatus PCC7942.
    Kamachi S; Wada K; Tamoi M; Shigeoka S; Tada T
    Acta Crystallogr F Struct Biol Commun; 2014 Mar; 70(Pt 3):288-93. PubMed ID: 24598912
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure of tetragonal crystals of human erythrocyte catalase.
    Safo MK; Musayev FN; Wu SH; Abraham DJ; Ko TP
    Acta Crystallogr D Biol Crystallogr; 2001 Jan; 57(Pt 1):1-7. PubMed ID: 11134921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.