These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 9931298)
1. 6-Phosphogluconate dehydrogenase from Lactococcus lactis: a role for arginine residues in binding substrate and coenzyme. Tetaud E; Hanau S; Wells JM; Le Page RW; Adams MJ; Arkison S; Barrett MP Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):55-60. PubMed ID: 9931298 [TBL] [Abstract][Full Text] [Related]
2. A 2.8 A resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei: comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues. Phillips C; Dohnalek J; Gover S; Barrett MP; Adams MJ J Mol Biol; 1998 Sep; 282(3):667-81. PubMed ID: 9737929 [TBL] [Abstract][Full Text] [Related]
3. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+. Levy HR; Vought VE; Yin X; Adams MJ Arch Biochem Biophys; 1996 Feb; 326(1):145-51. PubMed ID: 8579362 [TBL] [Abstract][Full Text] [Related]
4. The cross-linking by o-phthalaldehyde of two amino acid residues at the active site of 6-phosphogluconate dehydrogenase. Giovannini PP; Rippa M; Dallocchio F; Tetaud M; Barrett MP; Hanau S Biochem Mol Biol Int; 1997 Sep; 43(1):153-60. PubMed ID: 9315293 [TBL] [Abstract][Full Text] [Related]
5. A 6-phosphogluconate dehydrogenase gene from Trypanosoma brucei. Barrett MP; Le Page RW Mol Biochem Parasitol; 1993 Jan; 57(1):89-99. PubMed ID: 8426618 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic characterization of substrate and inhibitor binding to Trypanosoma brucei 6-phosphogluconate dehydrogenase. Montin K; Cervellati C; Dallocchio F; Hanau S FEBS J; 2007 Dec; 274(24):6426-35. PubMed ID: 18021252 [TBL] [Abstract][Full Text] [Related]
7. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785 [TBL] [Abstract][Full Text] [Related]
8. Crystal structures of a bacterial 6-phosphogluconate dehydrogenase reveal aspects of specificity, mechanism and mode of inhibition by analogues of high-energy reaction intermediates. Sundaramoorthy R; Iulek J; Barrett MP; Bidet O; Ruda GF; Gilbert IH; Hunter WN FEBS J; 2007 Jan; 274(1):275-86. PubMed ID: 17222187 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Adams MJ; Ellis GH; Gover S; Naylor CE; Phillips C Structure; 1994 Jul; 2(7):651-68. PubMed ID: 7922042 [TBL] [Abstract][Full Text] [Related]
10. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP Chen H; Zhu Z; Huang R; Zhang YP Sci Rep; 2016 Nov; 6():36311. PubMed ID: 27805055 [TBL] [Abstract][Full Text] [Related]
11. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P; Colman RF Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490 [TBL] [Abstract][Full Text] [Related]
12. The 6-phosphogluconate dehydrogenase from Trypanosoma cruzi: the absence of two inter-subunit salt bridges as a reason for enzyme instability. Esteve MI; Cazzulo JJ Mol Biochem Parasitol; 2004 Feb; 133(2):197-207. PubMed ID: 14698432 [TBL] [Abstract][Full Text] [Related]
13. Cloning of the 6-phosphogluconate dehydrogenase gene from Trypanosoma brucei by complementation in Escherichia coli. LePage RW; Barrett MP Biochem Soc Trans; 1990 Oct; 18(5):724-7. PubMed ID: 2083658 [No Abstract] [Full Text] [Related]
14. 6-Phosphogluconate dehydrogenase: the mechanism of action investigated by a comparison of the enzyme from different species. Rippa M; Giovannini PP; Barrett MP; Dallocchio F; Hanau S Biochim Biophys Acta; 1998 Dec; 1429(1):83-92. PubMed ID: 9920387 [TBL] [Abstract][Full Text] [Related]
16. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans. Tonouchi N; Sugiyama M; Yokozeki K Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146 [TBL] [Abstract][Full Text] [Related]
17. Residues that influence coenzyme preference in the aldehyde dehydrogenases. González-Segura L; Riveros-Rosas H; Julián-Sánchez A; Muñoz-Clares RA Chem Biol Interact; 2015 Jun; 234():59-74. PubMed ID: 25601141 [TBL] [Abstract][Full Text] [Related]
18. Dual coenzyme specificity of photosynthetic glyceraldehyde-3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD. Falini G; Fermani S; Ripamonti A; Sabatino P; Sparla F; Pupillo P; Trost P Biochemistry; 2003 Apr; 42(16):4631-9. PubMed ID: 12705826 [TBL] [Abstract][Full Text] [Related]
19. Heterologous expression of the Bacillus subtilis (natto) alanine dehydrogenase in Escherichia coli and Lactococcus lactis. Ye W; Huo G; Chen J; Liu F; Yin J; Yang L; Ma X Microbiol Res; 2010 May; 165(4):268-75. PubMed ID: 19720515 [TBL] [Abstract][Full Text] [Related]
20. Genetic and molecular analysis of the rpoD gene from Lactococcus lactis. Araya T; Ishibashi N; Shimamura S; Tanaka K; Takahashi H Biosci Biotechnol Biochem; 1993 Jan; 57(1):88-92. PubMed ID: 7503808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]