These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9931360)

  • 21. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish.
    Hiroi J; Yasumasu S; McCormick SD; Hwang PP; Kaneko T
    J Exp Biol; 2008 Aug; 211(Pt 16):2584-99. PubMed ID: 18689412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of zebrafish Fxyd11a protein that is highly expressed in ion-transporting epithelium of the gill and skin and its possible role in ion homeostasis.
    Saito K; Nakamura N; Ito Y; Hoshijima K; Esaki M; Zhao B; Hirose S
    Front Physiol; 2010; 1():129. PubMed ID: 21423371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metamorphosis in the summer flounder Paralichthys dentatus: changes in gill mitochondria-rich cells.
    Schreiber AM; Specker JL
    J Exp Biol; 1999; 202(Pt 18):2475-2484. PubMed ID: 10460734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exposure of the gill epithelial cells of larval lampreys to an ion-deficient environment: a stereological study.
    Bartels H; Schmiedl A; Rosenbruch J; Potter IC
    J Electron Microsc (Tokyo); 2009 Aug; 58(4):253-60. PubMed ID: 19244271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive alterations on gill Na⁺, K⁺-ATPase activity and mitochondrion-rich cells of juvenile Acipenser sinensis acclimated to brackish water.
    Zhao F; Wu B; Yang G; Zhang T; Zhuang P
    Fish Physiol Biochem; 2016 Apr; 42(2):749-56. PubMed ID: 26614501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel.
    Lai KP; Li JW; Gu J; Chan TF; Tse WK; Wong CK
    BMC Genomics; 2015 Dec; 16():1072. PubMed ID: 26678671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osmoregulatory role of the paternal brood pouch for two Syngnathus species.
    Ripley JL
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):98-104. PubMed ID: 19447186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Low pH acute exposure on survival and gill morphology in Triturus italicus larvae.
    Brunelli E; Tripepi S
    J Exp Zool A Comp Exp Biol; 2005 Nov; 303(11):946-57. PubMed ID: 16217800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organochlorines and metals induce changes in the mitochondria-rich cells of fish gills: an integrative field study involving chemical, biochemical and morphological analyses.
    Fernandes MN; Paulino MG; Sakuragui MM; Ramos CA; Pereira CD; Sadauskas-Henrique H
    Aquat Toxicol; 2013 Jan; 126():180-90. PubMed ID: 23220410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apical structures of "mitochondria-rich" alpha and beta cells in euryhaline fish gill: their behaviour in various living conditions.
    Pisam M; Le Moal C; Auperin B; Prunet P; Rambourg A
    Anat Rec; 1995 Jan; 241(1):13-24. PubMed ID: 7879919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological and quantitative changes in paternal brood-pouch vasculature during embryonic development in two Syngnathus pipefishes.
    Ripley JL; Williams PS; Foran CM
    J Fish Biol; 2010 Jul; 77(1):67-79. PubMed ID: 20646139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of multicellular complexes of chloride cells in the yolk-sac membrane of tilapia (Oreochromis mossambicus) embryos and larvae in seawater.
    Shiraishi K; Kaneko T; Hasegawa S; Hirano T
    Cell Tissue Res; 1997 Jun; 288(3):583-90. PubMed ID: 9134871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondria-Rich Cells: A Novel Type of Concealed Cell in the Small Intestine of Chinese Soft-Shelled Turtles (
    Ali Vistro W; Liu Y; Xu M; Yang P; Haseeb A; Huang Y; Bai X; Yu L; Gandahi NS; Tarique I; Chen Q
    Animals (Basel); 2019 Sep; 9(10):. PubMed ID: 31554287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of respiratory and ion-transporting epithelia in the phyllosoma larvae of the slipper lobster Scyllarus arctus.
    Haond C; Charmantier G; Flik G; Bonga SE
    Cell Tissue Res; 2001 Sep; 305(3):445-55. PubMed ID: 11572097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrastructural investigations of the epidermis and the gill epithelium in the intrauterine larvae of Salamandra salamandra (L.) (Amphibia, Urodela).
    Greven H
    Z Mikrosk Anat Forsch; 1980; 94(2):196-208. PubMed ID: 7415391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondria-rich (chloride) cells in the gill epithelia from four species of stenohaline fresh water teleosts.
    Kikuchi S
    Cell Tissue Res; 1977 May; 180(1):87-98. PubMed ID: 872189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondria-rich cells in gills and skin of an African lungfish, Protopterus annectens.
    Sturla M; Masini MA; Prato P; Grattarola C; Uva B
    Cell Tissue Res; 2001 Mar; 303(3):351-8. PubMed ID: 11320651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cultured gill epithelial cells from tilapia (Oreochromis niloticus): a new in vitro assay for toxicants.
    Zhou B; Liu W; Wu RS; Lam PK
    Aquat Toxicol; 2005 Jan; 71(1):61-72. PubMed ID: 15642632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FINE STRUCTURE OF CHLORIDE CELLS FROM THREE SPECIES OF FUNDULUS.
    PHILPOTT CW; COPELAND DE
    J Cell Biol; 1963 Aug; 18(2):389-404. PubMed ID: 14079496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of ion transporter expression in gill mitochondrion-rich cells of eels acclimated to low-Na(+) or-Cl(-) freshwater.
    Tse WK; Chow SC; Lai KP; Au DW; Wong CK
    J Exp Zool A Ecol Genet Physiol; 2011 Aug; 315(7):385-93. PubMed ID: 21455947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.