These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 9931484)
1. Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Inagaki Y; Johzuka-Hisatomi Y; Mori T; Takahashi S; Hayakawa Y; Peyachoknagul S; Ozeki Y; Iida S Gene; 1999 Jan; 226(2):181-8. PubMed ID: 9931484 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the chalcone synthase genes expressed in flowers of the common and Japanese morning glories. Johzuka-Hisatomi Y; Hoshino A; Mori T; Habu Y; Iida S Genes Genet Syst; 1999 Aug; 74(4):141-7. PubMed ID: 10650842 [TBL] [Abstract][Full Text] [Related]
3. Gene duplication and mobile genetic elements in the morning glories. Hoshino A; Johzuka-Hisatomi Y; Iida S Gene; 2001 Mar; 265(1-2):1-10. PubMed ID: 11255002 [TBL] [Abstract][Full Text] [Related]
4. Isolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Inagaki Y; Hisatomi Y; Suzuki T; Kasahara K; Iida S Plant Cell; 1994 Mar; 6(3):375-83. PubMed ID: 8180498 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of the dihydroflavonol 4-reductase B (DFR-B) gene in the sweet potato. Tanaka M; Nakatani M; Nakazawa Y; Takahata Y DNA Seq; 2004 Aug; 15(4):277-82. PubMed ID: 15620215 [TBL] [Abstract][Full Text] [Related]
6. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Iida S; Morita Y; Choi JD; Park KI; Hoshino A Adv Biophys; 2004; 38():141-59. PubMed ID: 15493332 [TBL] [Abstract][Full Text] [Related]
7. Genetic basis for a rare floral mutant in an Andean species of Solanaceae. Coburn RA; Griffin RH; Smith SD Am J Bot; 2015 Feb; 102(2):264-72. PubMed ID: 25667079 [TBL] [Abstract][Full Text] [Related]
8. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Iida S; Morita Y; Choi JD; Park KI; Hoshino A Adv Biophys; 2004; 38(Complete):141-159. PubMed ID: 15476897 [TBL] [Abstract][Full Text] [Related]
9. Identification of new chalcone synthase genes for flower pigmentation in the Japanese and common morning glories. Fukada-Tanaka S; Hoshino A; Hisatomi Y; Habu Y; Hasebe M; Iida S Plant Cell Physiol; 1997 Jun; 38(6):754-8. PubMed ID: 9249990 [TBL] [Abstract][Full Text] [Related]
10. Structural analysis of a gene cluster encoding DFR-like proteins from rice chromosome 4. Lei HY; Zhou B; Zhang Y; Hong GF Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Nov; 34(6):685-9. PubMed ID: 12417907 [TBL] [Abstract][Full Text] [Related]
11. Structural analysis of Tpn1, a transposable element isolated from Japanese morning glory bearing variegated flowers. Hoshino A; Inagaki Y; Iida S Mol Gen Genet; 1995 Apr; 247(1):114-7. PubMed ID: 7715598 [TBL] [Abstract][Full Text] [Related]
12. Expression of the dihydroflavonol reductase gene in an anthocyanin-free barley mutant. Wang X; Olsen O; Knudsen S Hereditas; 1993; 119(1):67-75. PubMed ID: 8244756 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Watanabe K; Kobayashi A; Endo M; Sage-Ono K; Toki S; Ono M Sci Rep; 2017 Aug; 7(1):10028. PubMed ID: 28855641 [TBL] [Abstract][Full Text] [Related]
14. Capture of a genomic HMG domain sequence by the En/Spm-related transposable element Tpn1 in the Japanese morning glory. Takahashi S; Inagaki Y; Satoh H; Hoshino A; Iida S Mol Gen Genet; 1999 Apr; 261(3):447-51. PubMed ID: 10323224 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Bongue-Bartelsman M; O'Neill SD; Tong Y; Yoder JI Gene; 1994 Jan; 138(1-2):153-7. PubMed ID: 7907304 [TBL] [Abstract][Full Text] [Related]
16. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Beld M; Martin C; Huits H; Stuitje AR; Gerats AG Plant Mol Biol; 1989 Nov; 13(5):491-502. PubMed ID: 2491667 [TBL] [Abstract][Full Text] [Related]
17. Development of a PCR-based marker utilizing a deletion mutation in the dihydroflavonol 4-reductase (DFR) gene responsible for the lack of anthocyanin production in yellow onions (Allium cepa). Kim S; Yoo KS; Pike LM Theor Appl Genet; 2005 Feb; 110(3):588-95. PubMed ID: 15647922 [TBL] [Abstract][Full Text] [Related]
18. Gene characterization, analysis of expression and in vitro synthesis of dihydroflavonol 4-reductase from [Citrus sinensis (L.) Osbeck]. Lo Piero AR; Puglisi I; Petrone G Phytochemistry; 2006 Apr; 67(7):684-95. PubMed ID: 16524606 [TBL] [Abstract][Full Text] [Related]
19. Dihydroflavonol 4-reductase cDNA from non-anthocyanin-producing species in the Caryophyllales. Shimada S; Takahashi K; Sato Y; Sakuta M Plant Cell Physiol; 2004 Sep; 45(9):1290-8. PubMed ID: 15509852 [TBL] [Abstract][Full Text] [Related]
20. Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. Himi E; Noda K J Exp Bot; 2004 Feb; 55(396):365-75. PubMed ID: 14718498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]