These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 9931999)

  • 1. [Insects as a possible source of new antibiotics. Products produced by insects and their practical importance].
    Stavri N
    Bacteriol Virusol Parazitol Epidemiol; 1998; 43(3):117-21. PubMed ID: 9931999
    [No Abstract]   [Full Text] [Related]  

  • 2. A respiratory hemocyanin from an insect.
    Hagner-Holler S; Schoen A; Erker W; Marden JH; Rupprecht R; Decker H; Burmester T
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):871-4. PubMed ID: 14715904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial peptides isolated from insects.
    Otvos L
    J Pept Sci; 2000 Oct; 6(10):497-511. PubMed ID: 11071264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and cDNA cloning of inducible antibacterial peptides from Protaetia brevitarsis (Coleoptera).
    Yoon HS; Lee CS; Lee SY; Choi CS; Lee IH; Yeo SM; Kim HR
    Arch Insect Biochem Physiol; 2003 Feb; 52(2):92-103. PubMed ID: 12529864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Australian webspinner species makes the finest known insect silk fibers.
    Okada S; Weisman S; Trueman HE; Mudie ST; Haritos VS; Sutherland TD
    Int J Biol Macromol; 2008 Oct; 43(3):271-5. PubMed ID: 18619485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp.
    Castiglione F; Cavaletti L; Losi D; Lazzarini A; Carrano L; Feroggio M; Ciciliato I; Corti E; Candiani G; Marinelli F; Selva E
    Biochemistry; 2007 May; 46(20):5884-95. PubMed ID: 17469849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative and functional genomics of lipases in holometabolous insects.
    Horne I; Haritos VS; Oakeshott JG
    Insect Biochem Mol Biol; 2009 Aug; 39(8):547-67. PubMed ID: 19540341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Antibacterial spectrum of antibacterial peptides from Musca domestica larvae and synergic interaction between the peptides and antibiotics].
    Gong X; Le GW; Li YF
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):516-20. PubMed ID: 16245861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategic expression of ion transport peptide gene products in central and peripheral neurons of insects.
    Dai L; Zitnan D; Adams ME
    J Comp Neurol; 2007 Jan; 500(2):353-67. PubMed ID: 17111378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a novel repetitive secretory protein specifically expressed in the modified salivary gland of Hydropsyche sp. (Trichoptera; Hydropsychidae).
    Eum JH; Yoe SM; Seo YR; Kang SW; Han SS
    Insect Biochem Mol Biol; 2005 May; 35(5):435-41. PubMed ID: 15804577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and lytic activity of eumenine mastoparan: a new antimicrobial peptide from wasp venom.
    dos Santos Cabrera MP; de Souza BM; Fontana R; Konno K; Palma MS; de Azevedo WF; Neto JR
    J Pept Res; 2004 Sep; 64(3):95-103. PubMed ID: 15317499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect iron binding proteins: insights from the genomes.
    Dunkov B; Georgieva T
    Insect Biochem Mol Biol; 2006 Apr; 36(4):300-9. PubMed ID: 16551544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral and antitumor peptides from insects.
    Chernysh S; Kim SI; Bekker G; Pleskach VA; Filatova NA; Anikin VB; Platonov VG; Bulet P
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12628-32. PubMed ID: 12235362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. 1981.
    Steiner H; Hultmark D; Engström A; Bennich H; Boman HG
    J Immunol; 2009 Jun; 182(11):6635-7. PubMed ID: 19454655
    [No Abstract]   [Full Text] [Related]  

  • 15. Diversity of stonefly hexamerins and implication for the evolution of insect storage proteins.
    Hagner-Holler S; Pick C; Girgenrath S; Marden JH; Burmester T
    Insect Biochem Mol Biol; 2007 Oct; 37(10):1064-74. PubMed ID: 17785194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biology of the CAPA peptides in insects.
    Predel R; Wegener C
    Cell Mol Life Sci; 2006 Nov; 63(21):2477-90. PubMed ID: 16952053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system.
    Dircksen H
    J Exp Biol; 2009 Feb; 212(Pt 3):401-12. PubMed ID: 19151215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular phylogenetic evidence for an extracellular Cu Zn superoxide dismutase gene in insects.
    Parker JD; Parker KM; Keller L
    Insect Mol Biol; 2004 Dec; 13(6):587-94. PubMed ID: 15606807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemoenzymatic approach to glycopeptide antibiotics.
    Lin H; Walsh CT
    J Am Chem Soc; 2004 Nov; 126(43):13998-4003. PubMed ID: 15506762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants.
    Cattoir V; Poirel L; Mazel D; Soussy CJ; Nordmann P
    Antimicrob Agents Chemother; 2007 Jul; 51(7):2650-1. PubMed ID: 17452482
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.