BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 993209)

  • 1. Impermeant maleimides. Oriented probes of erythrocyte membrane proteins.
    Abbott RE; Schachter D
    J Biol Chem; 1976 Nov; 251(22):7176-83. PubMed ID: 993209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of erythrocyte membrane proteins by membrane cholesterol and lipid fluidity.
    Borochov H; Abbott RE; Schachter D; Shinitzky M
    Biochemistry; 1979 Jan; 18(2):251-5. PubMed ID: 420782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impermeant maleimides. Identification of an exofacial component of the human erythrocyte hexose transport mechanism.
    Batt ER; Abbott RE; Schachter D
    J Biol Chem; 1976 Nov; 251(22):7184-90. PubMed ID: 993210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfhydryl substituents of the human erythrocyte hexose transport mechanism.
    Abbott RE; Schachter D; Batt ER; Flamm M
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C853-60. PubMed ID: 3717328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of an exofacial sulfhydryl group on the erythrocyte hexose carrier with an impermeant maleimide. Relevance to the mechanism of hexose transport.
    May JM
    J Biol Chem; 1988 Sep; 263(27):13635-40. PubMed ID: 3417676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topography of the external surface of the human red blood cell membrane studied with a nonpenetrating label, [125I]diazodiiodosulfanilic acid.
    Sears DA; Friedman JM; George JN
    J Biol Chem; 1977 Jan; 252(2):712-20. PubMed ID: 833150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topography and functions of sulfhydryl groups of the human erythrocyte glucose transport mechanism.
    Abbott RE; Schachter D
    Mol Cell Biochem; 1988; 82(1-2):85-90. PubMed ID: 3185521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of a permeant maleimide derivative of cysteine with the erythrocyte glucose carrier. Differential labelling of an exofacial carrier thiol group and its role in the transport mechanism.
    May JM
    Biochem J; 1989 Nov; 263(3):875-81. PubMed ID: 2489029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cationic hydroxysuccinimide ester. A reagent for labeling exterior membrane proteins.
    Zisapel N; Littauer UZ
    Biochim Biophys Acta; 1978 Sep; 512(1):156-62. PubMed ID: 698211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose.
    May JM
    Biochem J; 1988 Sep; 254(2):329-36. PubMed ID: 3178762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts.
    Lepke S; Passow H
    Biochim Biophys Acta; 1976 Dec; 455(2):353-70. PubMed ID: 999920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent photochemical surface labeling of intact human erythrocytes.
    Dockter ME
    J Biol Chem; 1979 Apr; 254(7):2161-4. PubMed ID: 429274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibition of hexose transport by permeant and impermeant sulfhydryl agents in rat adipocytes.
    May JM
    J Biol Chem; 1985 Jan; 260(1):462-7. PubMed ID: 3880745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The topology of the major band 4.5 protein component of the human erythrocyte membrane: characterization of reactive cysteine residues.
    Deziel MR; Jung CY; Rothstein A
    Biochim Biophys Acta; 1985 Sep; 819(1):83-92. PubMed ID: 4041454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reappraisal of the electron spin resonance spectra of maleimide and iodoacetamide spin labels in erythrocyte ghosts.
    Jones GL; Woodbury DM
    Arch Biochem Biophys; 1978 Oct; 190(2):611-6. PubMed ID: 214037
    [No Abstract]   [Full Text] [Related]  

  • 16. Differential labeling of the erythrocyte hexose carrier by N-ethylmaleimide: correlation of transport inhibition with reactive carrier sulfhydryl groups.
    May JM
    Biochim Biophys Acta; 1989 Nov; 986(2):207-16. PubMed ID: 2590670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for membrane protein oxidation during in vivo aging of human erythrocytes.
    Seppi C; Castellana MA; Minetti G; Piccinini G; Balduini C; Brovelli A
    Mech Ageing Dev; 1991 Mar; 57(3):247-58. PubMed ID: 2056779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative immunoelectrophoresis of proteins in human erythrocyte membranes. Analysis of protein bands obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Bjerrum OJ; Bhakdi S; Bog-Hansen TC; Knüfermann H; Wallach DF
    Biochim Biophys Acta; 1975 Nov; 406(4):489-504. PubMed ID: 52375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-linking of intact erythrocyte membrane with a newly synthesized cleavable bifunctional reagent.
    Sato S; Nakao M
    J Biochem; 1981 Oct; 90(4):1177-85. PubMed ID: 7309714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of transmembrane polypeptides in freeze fracture.
    Edwards HH; Mueller TJ; Morrison M
    Science; 1979 Mar; 203(4387):1343-6. PubMed ID: 424755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.