These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9932097)
1. Effect of rider and riding style on deformation of the front hoof wall in warmblood horses. Summerley HL; Thomason JJ; Bignell WW Equine Vet J Suppl; 1998 Sep; (26):81-5. PubMed ID: 9932097 [TBL] [Abstract][Full Text] [Related]
2. Variation in surface strain on the equine hoof wall at the midstep with shoeing, gait, substrate, direction of travel, and hoof shape. Thomason JJ Equine Vet J Suppl; 1998 Sep; (26):86-95. PubMed ID: 9932098 [TBL] [Abstract][Full Text] [Related]
3. Components of variation of surface hoof strain with time. Thomason JJ; Bignell WW; Sears W Equine Vet J Suppl; 2001 Apr; (33):63-6. PubMed ID: 11721572 [TBL] [Abstract][Full Text] [Related]
4. Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot. Persson-Sjodin E; Hernlund E; Pfau T; Haubro Andersen P; Rhodin M PLoS One; 2018; 13(4):e0195341. PubMed ID: 29621299 [TBL] [Abstract][Full Text] [Related]
5. A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study. Dejardin LM; Arnoczky SP; Cloud GL Equine Vet J; 1999 May; 31(3):232-7. PubMed ID: 10402137 [TBL] [Abstract][Full Text] [Related]
6. The effect of foot imbalance on point of force application in the horse. Wilson AM; Seelig TJ; Shield RA; Silverman BW Equine Vet J; 1998 Nov; 30(6):540-5. PubMed ID: 9844974 [TBL] [Abstract][Full Text] [Related]
7. Noninvasive photoelastic method to show distribution of strain in the hoof wall of a living horse. Davies HM Equine Vet J Suppl; 1997 May; (23):13-5. PubMed ID: 9354279 [TBL] [Abstract][Full Text] [Related]
8. Effects of shoeing on limb movement and ground reaction forces in Icelandic horses at walk, tölt and trot. Waldern NM; Wiestner T; Ramseier LC; Amport C; Weishaupt MA Vet J; 2013 Dec; 198 Suppl 1():e103-8. PubMed ID: 24360730 [TBL] [Abstract][Full Text] [Related]
9. The effect of frog pressure and downward vertical load on hoof wall weight-bearing and third phalanx displacement in the horse--an in vitro study. Olivier A; Wannenburg J; Gottschalk RD; van der Linde MJ; Groeneveld HT J S Afr Vet Assoc; 2001 Dec; 72(4):217-27. PubMed ID: 12219918 [TBL] [Abstract][Full Text] [Related]
10. Analysis of strain and stress in the equine hoof capsule using finite element methods: comparison with principal strains recorded in vivo. Thomason JJ; McClinchey HL; Jofriet JC Equine Vet J; 2002 Nov; 34(7):719-25. PubMed ID: 12455844 [TBL] [Abstract][Full Text] [Related]
11. Stirrup forces during horse riding: a comparison between sitting and rising trot. van Beek FE; de Cocq P; Timmerman M; Muller M Vet J; 2012 Jul; 193(1):193-8. PubMed ID: 22100209 [TBL] [Abstract][Full Text] [Related]
12. Dynamic evaluation of toe-heel and medio-lateral load distribution and hoof landing patterns in sound, unshod Standardbred horses with toed-in, toed-out and normal hoof conformation. Mokry A; Van de Water E; Politiek HT; van Doorn DA; Pille F; Oosterlinck M Vet J; 2021 Feb; 268():105593. PubMed ID: 33468307 [TBL] [Abstract][Full Text] [Related]
13. Investigation of forelimb hoof wall strains and hoof shape in unshod horses exercised on a treadmill at various speeds and gaits. Bellenzani MC; Merritt JS; Clarke S; Davies HM Am J Vet Res; 2012 Nov; 73(11):1735-41. PubMed ID: 23106458 [TBL] [Abstract][Full Text] [Related]
14. Use of an inertial measurement unit to assess the effect of forelimb lameness on three-dimensional hoof orientation in horses at a walk and trot. Moorman VJ; Reiser RF; Mahaffey CA; Peterson ML; McIlwraith CW; Kawcak CE Am J Vet Res; 2014 Sep; 75(9):800-8. PubMed ID: 25157883 [TBL] [Abstract][Full Text] [Related]
15. Use of an instrument sandwiched between the hoof and shoe to measure vertical ground reaction forces and three-dimensional acceleration at the walk, trot, and canter in horses. Kai M; Aoki O; Hiraga A; Oki H; Tokuriki M Am J Vet Res; 2000 Aug; 61(8):979-85. PubMed ID: 10951994 [TBL] [Abstract][Full Text] [Related]
16. Modelling biomechanical requirements of a rider for different horse-riding techniques at trot. de Cocq P; Muller M; Clayton HM; van Leeuwen JL J Exp Biol; 2013 May; 216(Pt 10):1850-61. PubMed ID: 23785107 [TBL] [Abstract][Full Text] [Related]
17. Application of a Hall-effect transducer for measurement of tendon strains in horses. Stephens PR; Nunamaker DM; Butterweck DM Am J Vet Res; 1989 Jul; 50(7):1089-95. PubMed ID: 2774333 [TBL] [Abstract][Full Text] [Related]
18. Relationship of foot conformation and force applied to the navicular bone of sound horses at the trot. Eliashar E; McGuigan MP; Wilson AM Equine Vet J; 2004 Jul; 36(5):431-5. PubMed ID: 15253085 [TBL] [Abstract][Full Text] [Related]
19. The development of hoof balance and landing preference in the post-natal period. Gorissen BMC; Serra Bragança FM; Wolschrijn CF; Back W; van Weeren PR Equine Vet J; 2018 Nov; 50(6):809-817. PubMed ID: 29679400 [TBL] [Abstract][Full Text] [Related]
20. A preliminary study on pressure-plate evaluation of forelimb toe-heel and mediolateral hoof balance on a hard vs. a soft surface in sound ponies at the walk and trot. Oosterlinck M; Royaux E; Back W; Pille F Equine Vet J; 2014 Nov; 46(6):751-5. PubMed ID: 24417416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]