These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9932099)

  • 1. In vitro attenuation of impact shock in equine digits.
    Lanovaz JL; Clayton HM; Watson LG
    Equine Vet J Suppl; 1998 Sep; (26):96-102. PubMed ID: 9932099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between fore- and hindlimb ground reaction force and hoof deceleration patterns in trotting horses.
    Gustås P; Johnston C; Roepstorff L; Drevemo S; Lanshammar H
    Equine Vet J; 2004 Dec; 36(8):737-42. PubMed ID: 15656507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro transmission and attenuation of impact vibrations in the distal forelimb.
    Willemen MA; Jacobs MW; Schamhardt HC
    Equine Vet J Suppl; 1999 Jul; (30):245-8. PubMed ID: 10659261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equine hoof function investigated by pressure transducers inside the hoof and accelerometers mounted on the first phalanx.
    Dyhre-Poulsen P; Smedegaard HH; Roed J; Korsgaard E
    Equine Vet J; 1994 Sep; 26(5):362-6. PubMed ID: 7988538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hoof orientation and ballast on acceleration and vibration in the hoof and distal forelimb following simulated impacts ex vivo.
    McCarty CA; Thomason JJ; Gordon K; Burkhart T; Bignell W
    Equine Vet J; 2015 Mar; 47(2):223-9. PubMed ID: 24580552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time domain characteristics of hoof-ground interaction at the onset of stance phase.
    Burn JF
    Equine Vet J; 2006 Nov; 38(7):657-63. PubMed ID: 17228582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of frog pressure and downward vertical load on hoof wall weight-bearing and third phalanx displacement in the horse--an in vitro study.
    Olivier A; Wannenburg J; Gottschalk RD; van der Linde MJ; Groeneveld HT
    J S Afr Vet Assoc; 2001 Dec; 72(4):217-27. PubMed ID: 12219918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a synthetic all-weather waxed track versus a crushed sand track on 3D acceleration of the front hoof in three horses trotting at high speed.
    Chateau H; Robin D; Falala S; Pourcelot P; Valette JP; Ravary B; Denoix JM; Crevier-Denoix N
    Equine Vet J; 2009 Mar; 41(3):247-51. PubMed ID: 19469230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of hoof deformation using optical motion capture.
    Burn JF; Brockington C
    Equine Vet J Suppl; 2001 Apr; (33):50-3. PubMed ID: 11721568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does 'hacking' surface type affect equine forelimb foot placement, movement symmetry or hoof impact deceleration during ridden walk and trot exercise?
    Barstow A; Bailey J; Campbell J; Harris C; Weller R; Pfau T
    Equine Vet J; 2019 Jan; 51(1):108-114. PubMed ID: 29665054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.
    Dejardin LM; Arnoczky SP; Cloud GL
    Equine Vet J; 1999 May; 31(3):232-7. PubMed ID: 10402137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional kinematics of the equine interphalangeal joints: articular impact of asymmetric bearing.
    Chateau H; Degueurce C; Jerbi H; Crevier-Denoix N; Pourcelot P; Audigié F; Pasqui-Boutard V; Denoix JM
    Vet Res; 2002; 33(4):371-82. PubMed ID: 12199364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of forelimb hoof wall strains and hoof shape in unshod horses exercised on a treadmill at various speeds and gaits.
    Bellenzani MC; Merritt JS; Clarke S; Davies HM
    Am J Vet Res; 2012 Nov; 73(11):1735-41. PubMed ID: 23106458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of two equine racing surfaces based on forelimb dynamic and hoof kinematic variables at the canter.
    Crevier-Denoix N; Pourcelot P; Holden-Douilly L; Camus M; Falala S; Ravary-Plumioën B; Vergari C; Desquilbet L; Chateau H
    Vet J; 2013 Dec; 198 Suppl 1():e124-9. PubMed ID: 24360756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-quantitative analysis of hoof-strike in the horse.
    Hjertén G; Drevemo S
    J Biomech; 1994 Aug; 27(8):997-1004. PubMed ID: 8089167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotion in the horse: kinematics and external and internal forces in the normal equine digit in the walk and trot.
    Schryver HF; Bartel DL; Langrana N; Lowe JE
    Am J Vet Res; 1978 Nov; 39(11):1728-33. PubMed ID: 736326
    [No Abstract]   [Full Text] [Related]  

  • 17. Noninvasive photoelastic method to show distribution of strain in the hoof wall of a living horse.
    Davies HM
    Equine Vet J Suppl; 1997 May; (23):13-5. PubMed ID: 9354279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The modulus of elasticity of equine hoof wall: implications for the mechanical function of the hoof.
    Douglas JE; Mittal C; Thomason JJ; Jofriet JC
    J Exp Biol; 1996 Aug; 199(Pt 8):1829-36. PubMed ID: 8708582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of an acute hoof wall angulation on the stride kinematics of trotting horses.
    Clayton HM
    Equine Vet J Suppl; 1990 Jun; (9):86-90. PubMed ID: 9259814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of gyroscopic sensors for objective evaluation of trimming and shoeing to alter time between heel and toe lift-off at end of the stance phase in horses walking and trotting on a treadmill.
    Keegan KG; Satterley JM; Skubic M; Yonezawa Y; Cooley JM; Wilson DA; Kramer J
    Am J Vet Res; 2005 Dec; 66(12):2046-54. PubMed ID: 16379645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.