These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 993226)

  • 41. Effect of thermal cycling on flexural properties of carbon-graphite fiber-reinforced polymers.
    Segerström S; Ruyter IE
    Dent Mater; 2009 Jul; 25(7):845-51. PubMed ID: 19230964
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long-term compressive creep deformation and damage in acrylic bone cements.
    Chwirut DJ
    J Biomed Mater Res; 1984 Jan; 18(1):25-37. PubMed ID: 6699030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Osseous reaction following filling of the femoral marrow cavity with carbon fiber-reinforced Sulfix 6 bone cement in the rabbit with reference to the organization of the reinforcing fibers in a polymethylmethacrylate matrix].
    Schultz JH; Wolter D
    Aktuelle Probl Chir Orthop; 1987; 31():404-6. PubMed ID: 2888395
    [No Abstract]   [Full Text] [Related]  

  • 44. Penetration and shear strength of cement-bone interfaces in vivo.
    MacDonald W; Swarts E; Beaver R
    Clin Orthop Relat Res; 1993 Jan; (286):283-8. PubMed ID: 8425359
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal/cement interface strength in cemented stem fixation.
    Ahmed AM; Raab S; Miller JE
    J Orthop Res; 1984; 2(2):105-18. PubMed ID: 6491806
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of an in vivo environment on the strength of bone cement.
    Rostoker W; Lereim P; Galante JO
    J Biomed Mater Res; 1979 May; 13(3):365-70. PubMed ID: 438225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new bioactive bone cement: its histological and mechanical characterization.
    Nishimura N; Yamamuro T; Taguchi Y; Ikenaga M; Nakamura T; Kokubo T; Yoshihara S
    J Appl Biomater; 1991; 2(4):219-29. PubMed ID: 10149398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The load carrying and fatigue properties of the stem-cement interface with smooth and porous coated femoral components.
    Manley MT; Stern LS; Gurtowski J
    J Biomed Mater Res; 1985; 19(5):563-75. PubMed ID: 4066729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strain-controlled fatigue of acrylic bone cement.
    Carter DR; Gates EI; Harris WH
    J Biomed Mater Res; 1982 Sep; 16(5):647-57. PubMed ID: 7130218
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sodium fluoride sustained-release bone cement: an experimental study in vitro and in vivo.
    Magnan B; Gabbi C; Regis D
    Acta Orthop Belg; 1994; 60(1):72-9; discussion 80. PubMed ID: 8171990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reinforcement of PMMA bone cement with a continuous wire coil--a 3D finite element study.
    Frigstad JR; Park JB
    Biomed Mater Eng; 1996; 6(6):429-39. PubMed ID: 9138653
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The concepts and terms of mechanics.
    Brod JJ
    Clin Orthop Relat Res; 1980; (146):9-17. PubMed ID: 7371274
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reinforcement of bone cement around prostheses by pre-coated wire coil: a preliminary study.
    Kim JK; Park JB
    Biomed Mater Eng; 1994; 4(5):369-80. PubMed ID: 8000291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Development of a carbon fiber-reinforced bone cement with optimized mechanical properties].
    Wolter D; Ringwald J; Fritsch A; Wellmanns S
    Aktuelle Probl Chir Orthop; 1987; 31():358-61. PubMed ID: 2888385
    [No Abstract]   [Full Text] [Related]  

  • 55. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoparticulate fillers improve the mechanical strength of bone cement.
    Gomoll AH; Fitz W; Scott RD; Thornhill TS; Bellare A
    Acta Orthop; 2008 Jun; 79(3):421-7. PubMed ID: 18622848
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of a functional dynamic loading on bone ingrowth into surface pores of orthopedic implants.
    Ducheyne P; De Meester P; Aernoudt E
    J Biomed Mater Res; 1977 Nov; 11(6):811-38. PubMed ID: 591524
    [No Abstract]   [Full Text] [Related]  

  • 58. Microscopic fracture aspects of impact tested human bones.
    Ducheyne P; Martens M; De Meester P; Aernoudt E; Vrancken M; Van Hulle F; Mulier JC
    J Bioeng; 1977 Aug; 1(3):197-207. PubMed ID: 615880
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stress relaxation and creep behaviour of normal and carbon fibre reinforced acrylic bone cement.
    Pal S; Saha S
    Biomaterials; 1982 Apr; 3(2):93-6. PubMed ID: 7082743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Does vacuum-mixing improve the fatigue properties of high-viscosity poly(methyl-methacrylate) (PMMA) bone cement? Comparison between two different evacuation methods.
    Fritsch E; Rupp S; Kaltenkirchen N
    Arch Orthop Trauma Surg; 1996; 115(3-4):131-5. PubMed ID: 8861576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.