These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 9932723)
21. Effects of mu- and kappa-opioid receptors on postoperative ileus in rats. De Winter BY; Boeckxstaens GE; De Man JG; Moreels TG; Herman AG; Pelckmans PA Eur J Pharmacol; 1997 Nov; 339(1):63-7. PubMed ID: 9450617 [TBL] [Abstract][Full Text] [Related]
22. Involvement of I2-imidazoline binding sites in positive and negative morphine analgesia modulatory effects. Gentili F; Cardinaletti C; Carrieri A; Ghelfi F; Mattioli L; Perfumi M; Vesprini C; Pigini M Eur J Pharmacol; 2006 Dec; 553(1-3):73-81. PubMed ID: 17081513 [TBL] [Abstract][Full Text] [Related]
23. Antibodies and antisense oligodeoxynucleotides to mu-opioid receptors, selectively block the effects of mu-opioid agonists on intestinal transit and permeability in mice. Pol O; Valle L; Sánchez-Blázquez P; Garzón J; Puig MM Br J Pharmacol; 1999 May; 127(2):397-404. PubMed ID: 10385239 [TBL] [Abstract][Full Text] [Related]
24. Comparative effects of prolyl-leucyl-glycinamide and naloxone on morphine-induced inhibition of gastrointestinal transit. Pillai NP; Bhargava HN Pharmacol Biochem Behav; 1984 Sep; 21(3):365-8. PubMed ID: 6149566 [TBL] [Abstract][Full Text] [Related]
25. Influence of potassium channel modulators on morphine state-dependent memory of passive avoidance. Zarrindast MR; Jafari MR; Shafaghi B; Djahanguiri B Behav Pharmacol; 2004 Mar; 15(2):103-10. PubMed ID: 15096910 [TBL] [Abstract][Full Text] [Related]
26. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958 [TBL] [Abstract][Full Text] [Related]
27. Involvement of endogenous opioids and ATP-sensitive potassium channels in the mediation of carbachol-induced antinociception at the spinal level: a behavioral study in rats. Kang Y; Zhang C; Qiao J Brain Res; 1997 Jul; 761(2):342-6. PubMed ID: 9252036 [TBL] [Abstract][Full Text] [Related]
28. Central and peripheral modulation of gastrointestinal transit in mice by DN-9, a multifunctional opioid/NPFF receptor agonist. Xu B; Guo Y; Zhang M; Zhang R; Chen D; Zhang Q; Xiao J; Xu K; Li N; Qiu Y; Zhu H; Niu J; Zhang X; Fang Q Neurogastroenterol Motil; 2020 Aug; 32(8):e13848. PubMed ID: 32281198 [TBL] [Abstract][Full Text] [Related]
29. Effects of morphine, nalbuphine and pentazocine on gastric emptying of indigestible solids. Asai T Arzneimittelforschung; 1998 Aug; 48(8):802-5. PubMed ID: 9748706 [TBL] [Abstract][Full Text] [Related]
30. Effects of nalbuphine, pentazocine and U50488H on gastric emptying and gastrointestinal transit in the rat. Asai T; Mapleson WW; Power I Br J Anaesth; 1998 Jun; 80(6):814-9. PubMed ID: 9771313 [TBL] [Abstract][Full Text] [Related]
31. The role of minoxidil on endogenous opioid peptides in the spinal cord: a putative co-agonist relationship between K-ATP openers and opioids. Campbell VC; Welch SP Eur J Pharmacol; 2001 Apr; 417(1-2):91-8. PubMed ID: 11301063 [TBL] [Abstract][Full Text] [Related]
32. Effects of morphine and naloxone on feline colonic transit. Krevsky B; Libster B; Maurer AH; Chase BJ; Fisher RS Life Sci; 1989; 44(13):873-9. PubMed ID: 2927248 [TBL] [Abstract][Full Text] [Related]
33. Preclinical studies of opioids and opioid antagonists on gastrointestinal function. Greenwood-Van Meerveld B; Gardner CJ; Little PJ; Hicks GA; Dehaven-Hudkins DL Neurogastroenterol Motil; 2004 Oct; 16 Suppl 2():46-53. PubMed ID: 15357851 [TBL] [Abstract][Full Text] [Related]
34. Influence of ATP-dependent K+ channels on nicotine-induced inhibition of withdrawal in morphine-dependent mice. Zarrindast MR; Mohajeri S Eur J Pharmacol; 2006 Dec; 552(1-3):90-8. PubMed ID: 17049514 [TBL] [Abstract][Full Text] [Related]
35. The possible involvement of adrenoceptors in the intestinal effect of morphine in mice. Wong CL Clin Exp Pharmacol Physiol; 1984; 11(6):605-10. PubMed ID: 6536420 [TBL] [Abstract][Full Text] [Related]
36. Interaction of morphine with a new alpha2-adrenoceptor agonist in mice. Sudo RT; Calasans-Maia JA; Galdino SL; Lima MC; Zapata-Sudo G; Hernandes MZ; Pitta IR J Pain; 2010 Jan; 11(1):71-8. PubMed ID: 19853523 [TBL] [Abstract][Full Text] [Related]
37. 6beta-naltrexol preferentially antagonizes opioid effects on gastrointestinal transit compared to antinociception in mice. Yancey-Wrona JE; Raymond TJ; Mercer HK; Sadée W; Bilsky EJ Life Sci; 2009 Sep; 85(11-12):413-20. PubMed ID: 19583969 [TBL] [Abstract][Full Text] [Related]
38. Endothelin ETA receptor blockade potentiates morphine analgesia but does not affect gastrointestinal transit in mice. Matwyshyn GA; Bhalla S; Gulati A Eur J Pharmacol; 2006 Aug; 543(1-3):48-53. PubMed ID: 16814278 [TBL] [Abstract][Full Text] [Related]
39. A new method using flow cytometry to measure the effects of drugs on gastric emptying and gastrointestinal transit in mice. Inada T; Asai T; Yamada M; Shingu K Arzneimittelforschung; 2004; 54(9):557-62. PubMed ID: 15500203 [TBL] [Abstract][Full Text] [Related]
40. Endogenous opioids and ATP-sensitive potassium channels are involved in the mediation of apomorphine-induced antinociception at the spinal level: a behavioral study in rats. Kang YM; Hu WM; Qiao JT Brain Res Bull; 1998 Jun; 46(3):225-8. PubMed ID: 9667815 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]