These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 99329)

  • 1. An in vivo-in vitro comparison of the effects of bile acids on the structural organization and functional activity of liver microsomal monooxygenases.
    Tsyrlov IB; Zakharova-Polyakova NE; Gromova OA; Pospelova LN; Lyakhovich VV
    Exp Mol Pathol; 1978 Oct; 29(2):131-43. PubMed ID: 99329
    [No Abstract]   [Full Text] [Related]  

  • 2. Purified NADPH cytochrome P-450 reductase. Interaction with hepatic microsomes and phospholipid vesicles.
    Gum JR; Strobel HW
    J Biol Chem; 1979 May; 254(10):4177-85. PubMed ID: 108270
    [No Abstract]   [Full Text] [Related]  

  • 3. Stimulation of microsomal N-demethylation by solubilized NADPH-cytochrome c reductase.
    Miwa GT; Cho AK
    Life Sci; 1976 May; 18(9):983-8. PubMed ID: 818455
    [No Abstract]   [Full Text] [Related]  

  • 4. Cholestasis as an in vivo model for analysis of the induction of liver microsomal monooxygenases by sodium phenobarbital and 3-methylcholanthrene.
    Tsyrlov IB; Polyakova NE; Gromova OA; Rivkind NB; Lyakhovich VV
    Biochem Pharmacol; 1979 May; 28(9):1473-8. PubMed ID: 475855
    [No Abstract]   [Full Text] [Related]  

  • 5. Liver microsomal electron transport systems. Properties of a reconstituted, NADH-mediated benzo[a]pyrene hydroxylation system.
    West SB; Lu AY
    Arch Biochem Biophys; 1977 Aug; 182(2):369-78. PubMed ID: 197888
    [No Abstract]   [Full Text] [Related]  

  • 6. [Mechanism of inhibition of rat liver microsomal monooxygenases during the development of cholestasis].
    Zakharova NE; Pospelova LN; Gromova OA; Tsyrlov IB; Liakhovich VV
    Vopr Med Khim; 1977; 23(2):181-5. PubMed ID: 883154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical production in a purified NADPH--cytochrome c (P-450) reductase system.
    Lai CS; Grover TA; Piette LH
    Arch Biochem Biophys; 1979 Apr; 193(2):373-8. PubMed ID: 111620
    [No Abstract]   [Full Text] [Related]  

  • 8. Lipid peroxidation activity mediated by NADPH-cytochrome C reductase purified from rabbit liver microsomes.
    Kamataki T; Naminohira S; Sugita O; Kitagawa H
    Jpn J Pharmacol; 1978 Dec; 28(6):819-27. PubMed ID: 218031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive cleavage of anthracycline glycosides by microsomal NADPH-cytochrome C reductase.
    Oki T; Komiyama T; Tone H; Inui T; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1977 Jul; 30(7):613-5. PubMed ID: 408319
    [No Abstract]   [Full Text] [Related]  

  • 10. Interaction between NADPH-cytochrome P-450 reductase and hepatic microsomes.
    Yang CS; Strickhart FS; Kicha LP
    Biochim Biophys Acta; 1978 May; 509(2):326-37. PubMed ID: 26401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bile acids produce a generalized reduction of the catalytic activity of cytochromes P450 and other hepatic microsomal enzymes in vitro: relevance to drug metabolism in experimental cholestasis.
    Chen J; Farrell GC
    J Gastroenterol Hepatol; 1996 Sep; 11(9):870-7. PubMed ID: 8889968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of NADPH-cytochrome c reductase in microsomal hydroxylation reactions.
    Prough RA; Burke MD
    Arch Biochem Biophys; 1975 Sep; 170(1):160-8. PubMed ID: 809012
    [No Abstract]   [Full Text] [Related]  

  • 13. Specific requirement of NADPH-cytochrome c reductase for the microsomal heme oxygenase reaction yielding biliverdin IX alpha.
    Noguchi M; Yoshida T; Kikuchi G
    FEBS Lett; 1979 Feb; 98(2):281-4. PubMed ID: 105935
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of lipid depletion on the kinetics of microsomal NADH-cytochrome C reductase.
    Ishibashi T; Imai Y
    Tohoku J Exp Med; 1976 Apr; 118(4):365-71. PubMed ID: 820017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solubilization of microsomal NADPH: cytochrome c reductase and cytochrome bs following the trypsin and pronase treatment.
    KamiƄski Z; Kaniuga Z
    Bull Acad Pol Sci Biol; 1975; 23(2):83-6. PubMed ID: 806332
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthesis and turnover of microsomal and mitochondrial NADH-cytochrome b5 reductases in rat liver.
    Okada Y; Omura T
    J Biochem; 1978 Apr; 83(4):1039-48. PubMed ID: 96106
    [No Abstract]   [Full Text] [Related]  

  • 17. Purification and properties of cytochrome P-450 and NADPH-cytochrome c (P-450) reductase from human liver microsomes.
    Kamataki T; Sugiura M; Yamazoe Y; Kato R
    Biochem Pharmacol; 1979 Jul; 28(13):1993-2000. PubMed ID: 113009
    [No Abstract]   [Full Text] [Related]  

  • 18. NADPH-cytochrome c reductase, cytochrome P-450 and NADPH-linked lipid peroxidation in microsomal fractions obtained from rat tissue.
    Benedetto C; Slater TF; Dianzani MU
    Biochem Soc Trans; 1976; 4(6):1094-7. PubMed ID: 828591
    [No Abstract]   [Full Text] [Related]  

  • 19. Involvement of NADPH-cytochrome c reductase in the rat liver squalene epoxidase system.
    Ono T; Ozasa S; Hasegawa F; Imai Y
    Biochim Biophys Acta; 1977 Mar; 486(3):401-7. PubMed ID: 403952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroxine stimulation of rat liver microsomal NADH-cytochrome c reductase in vitro.
    Faas FH; Carter WJ; Wynn JO
    Life Sci; 1974 Dec; 15(12):2059-68. PubMed ID: 4157284
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.