These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9933163)

  • 1. Elongation of oligopeptides in a simulated submarine hydrothermal system.
    Imai E; Honda H; Hatori K; Brack A; Matsuno K
    Science; 1999 Feb; 283(5403):831-3. PubMed ID: 9933163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of the prebiotic synthesis of oligopeptides: silicate catalysts help to overcome the critical stage.
    Zamaraev KI; Romannikov VN; Salganik RI; Wlassoff WA; Khramtsov VV
    Orig Life Evol Biosph; 1997 Aug; 27(4):325-37. PubMed ID: 11536826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal circulation of seawater through hot vents and contribution of interface chemistry to prebiotic synthesis.
    Ogata Y; Imai E; Honda H; Hatori K; Matsuno K
    Orig Life Evol Biosph; 2000 Dec; 30(6):527-37. PubMed ID: 11196573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction behaviors of glycine under super- and subcritical water conditions.
    Alargov DK; Deguchi S; Tsujii K; Horikoshi K
    Orig Life Evol Biosph; 2002 Feb; 32(1):1-12. PubMed ID: 11889913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocatalytic synthesis of oligoglycine in a simulated submarine hydrothermal system.
    Imai E; Honda H; Hatori K; Matsuno K
    Orig Life Evol Biosph; 1999 May; 29(3):249-59. PubMed ID: 10465715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral-enhanced hydrothermal oligopeptide formation at the second time scale.
    Kawamura K; Takeya H; Kushibe T; Koizumi Y
    Astrobiology; 2011 Jun; 11(5):461-9. PubMed ID: 21671764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.
    Shanker U; Bhushan B; Bhattacharjee G; Kamaluddin
    Orig Life Evol Biosph; 2012 Feb; 42(1):31-45. PubMed ID: 22373603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step formation of oligopeptide-like molecules from Glu and Asp in hydrothermal environments.
    Kawamura K; Shimahashi M
    Naturwissenschaften; 2008 May; 95(5):449-54. PubMed ID: 18253712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic prediction of glycine polymerization as a function of temperature and pH consistent with experimentally obtained results.
    Kitadai N
    J Mol Evol; 2014 Apr; 78(3-4):171-87. PubMed ID: 24652580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide synthesis in early Earth hydrothermal systems.
    Lemke KH; Rosenbauer RJ; Bird DK
    Astrobiology; 2009 Mar; 9(2):141-6. PubMed ID: 19371157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of the critical parameters for abiotic peptide synthesis in submarine hydrothermal systems.
    Cleaves HJ; Aubrey AD; Bada JL
    Orig Life Evol Biosph; 2009 Apr; 39(2):109-26. PubMed ID: 19037745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplification of diverse catalytic properties of evolving molecules in a simulated hydrothermal environment.
    Yokoyama S; Koyama A; Nemoto A; Honda H; Imai E; Hatori K; Matsuno K
    Orig Life Evol Biosph; 2003 Dec; 33(6):589-95. PubMed ID: 14601928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligomerization of glycine and alanine on metal(II) octacynaomolybdate(IV): role of double metal cyanides in prebiotic chemistry.
    Kumar A; Kamaluddin
    Amino Acids; 2012 Dec; 43(6):2417-29. PubMed ID: 22610728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesizing oligomers from monomeric nucleotides in simulated hydrothermal environments.
    Ogasawara H; Yoshida A; Imai E; Honda H; Hatori K; Matsuno K
    Orig Life Evol Biosph; 2000 Dec; 30(6):519-26. PubMed ID: 11196572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.
    Zhang X; Tian G; Gao J; Han M; Su R; Wang Y; Feng S
    Orig Life Evol Biosph; 2017 Dec; 47(4):413-425. PubMed ID: 27663450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of smectite composition on the catalysis of peptide bond formation.
    Bujdák J; Rode BM
    J Mol Evol; 1996 Oct; 43(4):326-33. PubMed ID: 8798338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry.
    Otake T; Taniguchi T; Furukawa Y; Kawamura F; Nakazawa H; Kakegawa T
    Astrobiology; 2011 Oct; 11(8):799-813. PubMed ID: 21961531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prebiotic peptide-formation in the solid state. III. Condensation reactions of glycine in solid state mixtures containing inorganic polyphosphates.
    Sawai H; Orgel LE
    J Mol Evol; 1975 Nov; 6(3):185-97. PubMed ID: 1539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diketopiperazine-mediated peptide formation in aqueous solution.
    Nagayama M; Takaoka O; Inomata K; Yamagata Y
    Orig Life Evol Biosph; 1990; 20(3-4):249-57. PubMed ID: 2290686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on the mechanism of peptide chain prolongation on montmorillonite.
    Bujdák J; Eder A; Yongyai Y; Faybíková K; Rode BM
    J Inorg Biochem; 1996 Jan; 61(1):69-78. PubMed ID: 8558134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.