These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9933519)

  • 1. An unusual reversible sol-Gel transition phenomenon in organogels and its application for enzyme immobilization in gelatin membranes.
    Fadnavis NW; Koteshwar K
    Biotechnol Prog; 1999 Jan; 15(1):98-104. PubMed ID: 9933519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microemulsion-based organogels as matrices for lipase immobilization.
    Zoumpanioti M; Stamatis H; Xenakis A
    Biotechnol Adv; 2010; 28(3):395-406. PubMed ID: 20156546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reusability of surfactant-coated Candida rugosa lipase immobilized in gelatin microemulsion-based organogels for ethyl isovalerate synthesis.
    Dandavate V; Madamwar D
    J Microbiol Biotechnol; 2008 Apr; 18(4):735-41. PubMed ID: 18467869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization.
    Ye P; Xu ZK; Wu J; Innocent C; Seta P
    Biomaterials; 2006 Aug; 27(22):4169-76. PubMed ID: 16584770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelatin blends with alginate: gels for lipase immobilization and purification.
    Fadnavis NW; Sheelu G; Kumar BM; Bhalerao MU; Deshpande AA
    Biotechnol Prog; 2003; 19(2):557-64. PubMed ID: 12675601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels.
    Jenta TR; Batts G; Rees GD; Robinson BH
    Biotechnol Bioeng; 1997 Jun; 54(5):416-27. PubMed ID: 18634134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of the pre-immobilization of enzymes on porous supports for their entrapment in sol-gels.
    Betancor L; López-Gallego F; Hidalgo A; Fuentes M; Podrasky O; Kuncova G; Guisán JM; Fernández-Lafuente R
    Biomacromolecules; 2005; 6(2):1027-30. PubMed ID: 15762674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Esterification of octanoic acid with 1-octanol catalyzed by lipase in W/O microemulsions and in microemulsion-based organogels].
    Zhou GW; Huang XR; Li YZ; Li GZ; Hu W
    Sheng Wu Gong Cheng Xue Bao; 2001 Mar; 17(2):224-7. PubMed ID: 11411238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2'-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures.
    Tam AY; Wong KM; Yam VW
    J Am Chem Soc; 2009 May; 131(17):6253-60. PubMed ID: 19354251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids.
    Hongwei Y; Jinchuan W; Chi Bun C
    Chirality; 2005 Jan; 17(1):16-21. PubMed ID: 15515047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalysis using gelatin microemulsion-based organogels containing immobilized Chromobacterium viscosum lipase.
    Jenta TR; Batts G; Rees GD; Robinson BH
    Biotechnol Bioeng; 1997 Jan; 53(2):121-31. PubMed ID: 18633956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of insoluble yeast beta-glucan as a support for immobilization of Candida rugosa lipase.
    Vaidya BK; Singhal RS
    Colloids Surf B Biointerfaces; 2008 Jan; 61(1):101-5. PubMed ID: 17681766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.
    Miyawaki O; Omote C; Matsuhira K
    Biopolymers; 2015 Dec; 103(12):685-91. PubMed ID: 26215282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling thermo-reversibility of gelatin gels through a peroxidase-catalyzed reaction under mild conditions for mammalian cells.
    Sakai S; Moriyama K; Kawakami K
    J Biomater Sci Polym Ed; 2011; 22(9):1147-56. PubMed ID: 20615328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of reverse micelle based organogels of piroxicam.
    Agrawal GP; Juneja M; Agrawal S; Jain SK; Pancholi SS
    Pharmazie; 2004 Mar; 59(3):191-3. PubMed ID: 15074590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials.
    Reetz MT; Zonta A; Simpelkamp J
    Biotechnol Bioeng; 1996 Mar; 49(5):527-34. PubMed ID: 18623614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal stability enhancements of Candida rugosa lipase in ionic liquids.
    Fráter T; Ulbert O; Bélafi-Bakó K; Gubicza L
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):293-6. PubMed ID: 15296180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sol-gel encapsulation: an efficient and versatile immobilization technique for cutinase in non-aqueous media.
    Vidinha P; Augusto V; Almeida M; Fonseca I; Fidalgo A; Ilharco L; Cabral JM; Barreiros S
    J Biotechnol; 2006 Jan; 121(1):23-33. PubMed ID: 16095741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical Conductivity of Water/Sodium Bis(2-ethylhexyl) Sulfosuccinate/n-Heptane and Water/Sodium Bis(2-ethylhexyl) Phosphate/n-Heptane Systems: The Influences of Water Content, Bis(2-ethylhexyl) Phosphoric Acid, and Temperature.
    Li Q; Li T; Wu J
    J Colloid Interface Sci; 2001 Jul; 239(2):522-527. PubMed ID: 11427019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface.
    Yujun W; Jian X; Guangsheng L; Youyuan D
    Bioresour Technol; 2008 May; 99(7):2299-303. PubMed ID: 17591438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.