These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 9933909)
1. Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. Levy RM; Gallicchio E Annu Rev Phys Chem; 1998; 49():531-67. PubMed ID: 9933909 [TBL] [Abstract][Full Text] [Related]
2. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738 [TBL] [Abstract][Full Text] [Related]
3. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory. Thomas AS; Elcock AH J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493 [TBL] [Abstract][Full Text] [Related]
4. Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Dzubiella J; Swanson JM; McCammon JA Phys Rev Lett; 2006 Mar; 96(8):087802. PubMed ID: 16606226 [TBL] [Abstract][Full Text] [Related]
5. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models. Olson MA Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087 [TBL] [Abstract][Full Text] [Related]
6. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL; Dumont E; Chodera JD; Dill KA J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029 [TBL] [Abstract][Full Text] [Related]
7. Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models. Wagoner J; Baker NA J Comput Chem; 2004 Oct; 25(13):1623-9. PubMed ID: 15264256 [TBL] [Abstract][Full Text] [Related]
9. FACTS: Fast analytical continuum treatment of solvation. Haberthür U; Caflisch A J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282 [TBL] [Abstract][Full Text] [Related]
10. Nonuniform charge scaling (NUCS): a practical approximation of solvent electrostatic screening in proteins. Schwarzl SM; Huang D; Smith JC; Fischer S J Comput Chem; 2005 Oct; 26(13):1359-71. PubMed ID: 16021598 [TBL] [Abstract][Full Text] [Related]
11. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies. Deng N; Zhang BW; Levy RM J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174 [TBL] [Abstract][Full Text] [Related]
13. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337 [TBL] [Abstract][Full Text] [Related]
14. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250 [TBL] [Abstract][Full Text] [Related]
15. The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. Gallicchio E; Zhang LY; Levy RM J Comput Chem; 2002 Apr; 23(5):517-29. PubMed ID: 11948578 [TBL] [Abstract][Full Text] [Related]
16. Generalized born models of macromolecular solvation effects. Bashford D; Case DA Annu Rev Phys Chem; 2000; 51():129-52. PubMed ID: 11031278 [TBL] [Abstract][Full Text] [Related]
17. Fast estimation of solvation free energies for diverse chemical species. Boyer RD; Bryan RL J Phys Chem B; 2012 Mar; 116(12):3772-9. PubMed ID: 22339050 [TBL] [Abstract][Full Text] [Related]
18. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field. Suzuoka D; Takahashi H; Ishiyama T; Morita A J Chem Phys; 2012 Dec; 137(21):214503. PubMed ID: 23231247 [TBL] [Abstract][Full Text] [Related]
19. Linear response theory: an alternative to PB and GB methods for the analysis of molecular dynamics trajectories? Morreale A; de la Cruz X; Meyer T; Gelpí JL; Luque FJ; Orozco M Proteins; 2004 Nov; 57(3):458-67. PubMed ID: 15382247 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials. Hassan SA; Mehler EL; Zhang D; Weinstein H Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]