These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 9933925)

  • 1. Transport of acetate in mutants of Saccharomyces cerevisiae defective in monocarboxylate permeases.
    Paiva S; Althoff S; Casal M; Leão C
    FEMS Microbiol Lett; 1999 Jan; 170(2):301-6. PubMed ID: 9933925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane.
    Makuc J; Paiva S; Schauen M; Krämer R; André B; Casal M; Leão C; Boles E
    Yeast; 2001 Sep; 18(12):1131-43. PubMed ID: 11536335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2.
    Pacheco A; Talaia G; Sá-Pessoa J; Bessa D; Gonçalves MJ; Moreira R; Paiva S; Casal M; Queirós O
    FEMS Yeast Res; 2012 May; 12(3):375-81. PubMed ID: 22260735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of pyruvate in Saccharomyces cerevisiae and cloning of the gene encoded pyruvate permease.
    Akita O; Nishimori C; Shimamoto T; Fujii T; Iefuji H
    Biosci Biotechnol Biochem; 2000 May; 64(5):980-4. PubMed ID: 10879467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae.
    Casal M; Cardoso H; Leão C
    Appl Environ Microbiol; 1998 Feb; 64(2):665-8. PubMed ID: 9464405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae.
    Casal M; Cardoso H; Leao C
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1385-1390. PubMed ID: 8704978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae.
    Regenberg B; Kielland-Brandt MC
    Yeast; 2001 Nov; 18(15):1429-40. PubMed ID: 11746604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source.
    Palmieri L; Vozza A; Hönlinger A; Dietmeier K; Palmisano A; Zara V; Palmieri F
    Mol Microbiol; 1999 Jan; 31(2):569-77. PubMed ID: 10027973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ureidosuccinic acid uptake in yeast and some aspects of its regulation.
    Drillien R; Lacroute F
    J Bacteriol; 1972 Jan; 109(1):203-8. PubMed ID: 4550662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the amino acid permeases in nitrogen-limited continuous cultures of the yeast Saccharomyces cerevisiae.
    Olivera H; González A; Peña A
    Yeast; 1993 Oct; 9(10):1065-73. PubMed ID: 8256513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UGA4 gene expression in Saccharomyces cerevisiae depends on cell growth conditions.
    Bermúdez Moretti M; Correa García S; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1998 Jun; 44(4):585-90. PubMed ID: 9678893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1.
    Casal M; Paiva S; Andrade RP; Gancedo C; Leão C
    J Bacteriol; 1999 Apr; 181(8):2620-3. PubMed ID: 10198029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae.
    Paiva S; Devaux F; Barbosa S; Jacq C; Casal M
    Yeast; 2004 Feb; 21(3):201-10. PubMed ID: 14968426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the chronic ethanol action on the activity of the general amino-acid permease from Saccharomyces cerevisiae var. ellipsoideus.
    Ferreras JM; Iglesias R; Girbés T
    Biochim Biophys Acta; 1989 Mar; 979(3):375-7. PubMed ID: 2647148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae.
    Grenson M
    Eur J Biochem; 1983 Jun; 133(1):135-9. PubMed ID: 6343083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of a trifluoroleucine-resistant mutant of Saccharomyces cerevisiae deficient in both high- and low-affinity L-leucine transport.
    Chianelli MS; Stella CA; Sáenz DA; Ramos EH; Kotliar N; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1996 Sep; 42(6):847-57. PubMed ID: 8891352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Kluyver effect for trehalose in Saccharomyces cerevisiae.
    Malluta EF; Decker P; Stambuk BU
    J Basic Microbiol; 2000; 40(3):199-205. PubMed ID: 10957961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae.
    Andrade RP; Casal M
    Fungal Genet Biol; 2001 Mar; 32(2):105-11. PubMed ID: 11352531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae.
    Zhang P; Hu X
    World J Microbiol Biotechnol; 2018 Mar; 34(3):47. PubMed ID: 29536194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.