These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9933981)

  • 1. Stereoinversions using microbial redox-reactions.
    Carnell AJ
    Adv Biochem Eng Biotechnol; 1999; 63():57-72. PubMed ID: 9933981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of redox potential of Metschnikowia koreensis for stereoinversion of secondary alcohols/1,2-diols.
    Meena VS; Banoth L; Banerjee UC
    Biomed Res Int; 2014; 2014():410530. PubMed ID: 24592389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):249-55. PubMed ID: 17486338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes.
    Azerad R; Buisson D
    Curr Opin Biotechnol; 2000 Dec; 11(6):565-71. PubMed ID: 11102790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocatalysis and biotransformation in Brazil: An overview.
    Birolli WG; Ferreira IM; Alvarenga N; Santos Dde A; de Matos IL; Comasseto JV; Porto AL
    Biotechnol Adv; 2015; 33(5):481-510. PubMed ID: 25687277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox enzymes used in chiral syntheses coupled to coenzyme regeneration.
    Leonida MD
    Curr Med Chem; 2001 Mar; 8(4):345-69. PubMed ID: 11172694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactones 42. Stereoselective enzymatic/microbial synthesis of optically active isomers of whisky lactone.
    Boratyński F; Smuga M; Wawrzeńczyk C
    Food Chem; 2013 Nov; 141(1):419-27. PubMed ID: 23768375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of microorganisms towards synthesis of chiral terpenoid derivatives.
    Kuriata-Adamusiak R; Strub D; Lochyński S
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1427-36. PubMed ID: 22846902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial reduction of ketopantoyl lactone to pantoyl lactone.
    Lanzilotta RP; Bradley DG; McDonald KM
    Appl Microbiol; 1974 Jan; 27(1):130-4. PubMed ID: 4589122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions.
    Chadha A; Venkataraman S; Preetha R; Padhi SK
    Bioorg Chem; 2016 Oct; 68():187-213. PubMed ID: 27544073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric biocatalysis with microbial enzymes and cells.
    Wohlgemuth R
    Curr Opin Microbiol; 2010 Jun; 13(3):283-92. PubMed ID: 20434391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concise Redox Deracemization of Secondary and Tertiary Amines with a Tetrahydroisoquinoline Core via a Nonenzymatic Process.
    Ji Y; Shi L; Chen MW; Feng GS; Zhou YG
    J Am Chem Soc; 2015 Aug; 137(33):10496-9. PubMed ID: 26274896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic racemization of sec-alcohols and alpha-hydroxyketones using lyophilized microbial cells.
    Nestl BM; Voss CV; Bodlenner A; Ellmer-Schaumberger U; Kroutil W; Faber K
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):1001-8. PubMed ID: 17628797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoselective epoxidation of 2,2-dimethyl-2H-1-benzopyran-6-carbonitrile.
    Patel RN; Banerjee A; Davis B; Howell J; McNamee C; Brzozowaski D; North J; Kronenthal D; Szarka L
    Bioorg Med Chem; 1994 Jun; 2(6):535-42. PubMed ID: 8000876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family.
    Stuermer R; Hauer B; Hall M; Faber K
    Curr Opin Chem Biol; 2007 Apr; 11(2):203-13. PubMed ID: 17353140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformations of some monoterpenoids and sesquiterpenoids.
    Abraham WR; Hoffmann HM; Kieslich K; Reng G; Stumpf B
    Ciba Found Symp; 1985; 111():146-60. PubMed ID: 3848377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Williopsis californica, Williopsis saturnus, and Pachysolen tannophilus: novel microorganisms for stereoselective oxidation of secondary alcohols.
    Carballeira Rodríguez JD; García-Burgos C; Quezada Alvarez MA; Alvarez Ruiz E; Sinisterra Gago JV
    Biotechnol Bioeng; 2004 Sep; 87(5):632-40. PubMed ID: 15352061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols--part I: processes with isolated enzymes.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):237-48. PubMed ID: 17516064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole cell biocatalysts: essential workers from Nature to the industry.
    de Carvalho CC
    Microb Biotechnol; 2017 Mar; 10(2):250-263. PubMed ID: 27145540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoselective Pd-catalyzed oxidation of polyols: synthetic scope and mechanistic studies.
    Chung K; Banik SM; De Crisci AG; Pearson DM; Blake TR; Olsson JV; Ingram AJ; Zare RN; Waymouth RM
    J Am Chem Soc; 2013 May; 135(20):7593-602. PubMed ID: 23659308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.