These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 9934910)
1. Prognostic value of blood lactate, base deficit, and oxygen-derived variables in an LD50 model of penetrating trauma. Moomey CB; Melton SM; Croce MA; Fabian TC; Proctor KG Crit Care Med; 1999 Jan; 27(1):154-61. PubMed ID: 9934910 [TBL] [Abstract][Full Text] [Related]
2. Monitoring of tissue oxygenation in shock: an experimental study in pigs. Schlichting E; Lyberg T Crit Care Med; 1995 Oct; 23(10):1703-10. PubMed ID: 7587236 [TBL] [Abstract][Full Text] [Related]
3. Nociceptive somatic nerve stimulation and skeletal muscle injury modify systemic hemodynamics and oxygen transport and utilization after resuscitation from hemorrhage. Rady MY; Kirkman E; Cranley J; Little RA Crit Care Med; 1996 Apr; 24(4):623-30. PubMed ID: 8612414 [TBL] [Abstract][Full Text] [Related]
4. Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Friedman G; Berlot G; Kahn RJ; Vincent JL Crit Care Med; 1995 Jul; 23(7):1184-93. PubMed ID: 7600825 [TBL] [Abstract][Full Text] [Related]
5. Investigation of noninvasive muscle pH and oxygen saturation during uncontrolled hemorrhage and resuscitation in swine. Soller B; Smith C; Zou F; Ellerby GE; Prince MD; Sondeen JL Shock; 2014 Jul; 42(1):44-51. PubMed ID: 24667624 [TBL] [Abstract][Full Text] [Related]
6. MalPEG-hemoglobin (MP4) improves hemodynamics, acid-base status, and survival after uncontrolled hemorrhage in anesthetized swine. Young MA; Riddez L; Kjellström BT; Bursell J; Winslow F; Lohman J; Winslow RM Crit Care Med; 2005 Aug; 33(8):1794-804. PubMed ID: 16096458 [TBL] [Abstract][Full Text] [Related]
7. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Cohen IL; Sheikh FM; Perkins RJ; Feustel PJ; Foster ED Crit Care Med; 1995 Mar; 23(3):545-52. PubMed ID: 7874908 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the effects of autotransfusion of unprocessed blood on hemodynamics and oxygen transport in anesthetized pigs. Filos KS; Vagianos CE; Stavropoulos M; Tassoudis V; Patroni O; Fligou F; Goudas LC; Androulakis J Crit Care Med; 1996 May; 24(5):855-61. PubMed ID: 8706465 [TBL] [Abstract][Full Text] [Related]
9. The relationship of base deficit to lactate in porcine hemorrhagic shock and resuscitation. Davis JW J Trauma; 1994 Feb; 36(2):168-72. PubMed ID: 8114129 [TBL] [Abstract][Full Text] [Related]
10. Reproducibility of an animal model simulating complex combat-related injury in a multiple-institution format. Cho SD; Holcomb JB; Tieu BH; Englehart MS; Morris MS; Karahan ZA; Underwood SA; Muller PJ; Prince MD; Medina L; Sondeen J; Shults C; Duggan M; Tabbara M; Alam HB; Schreiber MA Shock; 2009 Jan; 31(1):87-96. PubMed ID: 18497710 [TBL] [Abstract][Full Text] [Related]
11. A comparison of initial lactate and initial base deficit as predictors of mortality after severe blunt trauma. Gale SC; Kocik JF; Creath R; Crystal JS; Dombrovskiy VY J Surg Res; 2016 Oct; 205(2):446-455. PubMed ID: 27664895 [TBL] [Abstract][Full Text] [Related]
12. Hemodynamic responses to shock in young trauma patients: need for invasive monitoring. Abou-Khalil B; Scalea TM; Trooskin SZ; Henry SM; Hitchcock R Crit Care Med; 1994 Apr; 22(4):633-9. PubMed ID: 8143473 [TBL] [Abstract][Full Text] [Related]
13. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Kaplan LJ; Kellum JA Crit Care Med; 2004 May; 32(5):1120-4. PubMed ID: 15190960 [TBL] [Abstract][Full Text] [Related]
14. Heart Rate Variability Analysis in an Experimental Model of Hemorrhagic Shock and Resuscitation in Pigs. Salomão E; Otsuki DA; Correa AL; Fantoni DT; dos Santos F; Irigoyen MC; Auler JO PLoS One; 2015; 10(8):e0134387. PubMed ID: 26247476 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Noninvasive pH and Blood Lactate as Predictors of Mortality in a Swine Hemorrhagic Shock with Restricted Volume Resuscitation Model. Soller B; Zou F; Prince MD; Dubick MA; Sondeen JL Shock; 2015 Aug; 44 Suppl 1(Suppl 1):90-5. PubMed ID: 25526374 [TBL] [Abstract][Full Text] [Related]
16. Oxygen transport and cardiovascular effects of resuscitation from severe hemorrhagic shock using hemoglobin solutions. Sprung J; Mackenzie CF; Barnas GM; Williams JE; Parr M; Christenson RH; Hoff BH; Sakamoto R; Kramer A; Lottes M Crit Care Med; 1995 Sep; 23(9):1540-53. PubMed ID: 7664557 [TBL] [Abstract][Full Text] [Related]
17. Elevated arterial base deficit in trauma patients: a marker of impaired oxygen utilization. Kincaid EH; Miller PR; Meredith JW; Rahman N; Chang MC J Am Coll Surg; 1998 Oct; 187(4):384-92. PubMed ID: 9783784 [TBL] [Abstract][Full Text] [Related]
18. Arterial-venous carbon dioxide tension difference during severe hemorrhage and resuscitation. Ducey JP; Lamiell JM; Gueller GE Crit Care Med; 1992 Apr; 20(4):518-22. PubMed ID: 1559366 [TBL] [Abstract][Full Text] [Related]
19. Acadesine during fluid resuscitation from shock and abdominal sepsis. Melton SM; Moomey CB; Ragsdale DN; Trenthem LL; Croce MA; Fabian TC; Proctor KG Crit Care Med; 1999 Mar; 27(3):565-75. PubMed ID: 10199538 [TBL] [Abstract][Full Text] [Related]
20. Phosphomonoesters predict early mortality in porcine hemorrhagic shock. Taylor JH; Beilman GJ; Conroy MJ; Mulier KE; Hammer BE J Trauma; 2004 Feb; 56(2):251-8. PubMed ID: 14960964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]