BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 9934910)

  • 1. Prognostic value of blood lactate, base deficit, and oxygen-derived variables in an LD50 model of penetrating trauma.
    Moomey CB; Melton SM; Croce MA; Fabian TC; Proctor KG
    Crit Care Med; 1999 Jan; 27(1):154-61. PubMed ID: 9934910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of tissue oxygenation in shock: an experimental study in pigs.
    Schlichting E; Lyberg T
    Crit Care Med; 1995 Oct; 23(10):1703-10. PubMed ID: 7587236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nociceptive somatic nerve stimulation and skeletal muscle injury modify systemic hemodynamics and oxygen transport and utilization after resuscitation from hemorrhage.
    Rady MY; Kirkman E; Cranley J; Little RA
    Crit Care Med; 1996 Apr; 24(4):623-30. PubMed ID: 8612414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis.
    Friedman G; Berlot G; Kahn RJ; Vincent JL
    Crit Care Med; 1995 Jul; 23(7):1184-93. PubMed ID: 7600825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of noninvasive muscle pH and oxygen saturation during uncontrolled hemorrhage and resuscitation in swine.
    Soller B; Smith C; Zou F; Ellerby GE; Prince MD; Sondeen JL
    Shock; 2014 Jul; 42(1):44-51. PubMed ID: 24667624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MalPEG-hemoglobin (MP4) improves hemodynamics, acid-base status, and survival after uncontrolled hemorrhage in anesthetized swine.
    Young MA; Riddez L; Kjellström BT; Bursell J; Winslow F; Lohman J; Winslow RM
    Crit Care Med; 2005 Aug; 33(8):1794-804. PubMed ID: 16096458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine.
    Cohen IL; Sheikh FM; Perkins RJ; Feustel PJ; Foster ED
    Crit Care Med; 1995 Mar; 23(3):545-52. PubMed ID: 7874908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effects of autotransfusion of unprocessed blood on hemodynamics and oxygen transport in anesthetized pigs.
    Filos KS; Vagianos CE; Stavropoulos M; Tassoudis V; Patroni O; Fligou F; Goudas LC; Androulakis J
    Crit Care Med; 1996 May; 24(5):855-61. PubMed ID: 8706465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship of base deficit to lactate in porcine hemorrhagic shock and resuscitation.
    Davis JW
    J Trauma; 1994 Feb; 36(2):168-72. PubMed ID: 8114129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility of an animal model simulating complex combat-related injury in a multiple-institution format.
    Cho SD; Holcomb JB; Tieu BH; Englehart MS; Morris MS; Karahan ZA; Underwood SA; Muller PJ; Prince MD; Medina L; Sondeen J; Shults C; Duggan M; Tabbara M; Alam HB; Schreiber MA
    Shock; 2009 Jan; 31(1):87-96. PubMed ID: 18497710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of initial lactate and initial base deficit as predictors of mortality after severe blunt trauma.
    Gale SC; Kocik JF; Creath R; Crystal JS; Dombrovskiy VY
    J Surg Res; 2016 Oct; 205(2):446-455. PubMed ID: 27664895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic responses to shock in young trauma patients: need for invasive monitoring.
    Abou-Khalil B; Scalea TM; Trooskin SZ; Henry SM; Hitchcock R
    Crit Care Med; 1994 Apr; 22(4):633-9. PubMed ID: 8143473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury.
    Kaplan LJ; Kellum JA
    Crit Care Med; 2004 May; 32(5):1120-4. PubMed ID: 15190960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heart Rate Variability Analysis in an Experimental Model of Hemorrhagic Shock and Resuscitation in Pigs.
    Salomão E; Otsuki DA; Correa AL; Fantoni DT; dos Santos F; Irigoyen MC; Auler JO
    PLoS One; 2015; 10(8):e0134387. PubMed ID: 26247476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Noninvasive pH and Blood Lactate as Predictors of Mortality in a Swine Hemorrhagic Shock with Restricted Volume Resuscitation Model.
    Soller B; Zou F; Prince MD; Dubick MA; Sondeen JL
    Shock; 2015 Aug; 44 Suppl 1(Suppl 1):90-5. PubMed ID: 25526374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen transport and cardiovascular effects of resuscitation from severe hemorrhagic shock using hemoglobin solutions.
    Sprung J; Mackenzie CF; Barnas GM; Williams JE; Parr M; Christenson RH; Hoff BH; Sakamoto R; Kramer A; Lottes M
    Crit Care Med; 1995 Sep; 23(9):1540-53. PubMed ID: 7664557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated arterial base deficit in trauma patients: a marker of impaired oxygen utilization.
    Kincaid EH; Miller PR; Meredith JW; Rahman N; Chang MC
    J Am Coll Surg; 1998 Oct; 187(4):384-92. PubMed ID: 9783784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arterial-venous carbon dioxide tension difference during severe hemorrhage and resuscitation.
    Ducey JP; Lamiell JM; Gueller GE
    Crit Care Med; 1992 Apr; 20(4):518-22. PubMed ID: 1559366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acadesine during fluid resuscitation from shock and abdominal sepsis.
    Melton SM; Moomey CB; Ragsdale DN; Trenthem LL; Croce MA; Fabian TC; Proctor KG
    Crit Care Med; 1999 Mar; 27(3):565-75. PubMed ID: 10199538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphomonoesters predict early mortality in porcine hemorrhagic shock.
    Taylor JH; Beilman GJ; Conroy MJ; Mulier KE; Hammer BE
    J Trauma; 2004 Feb; 56(2):251-8. PubMed ID: 14960964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.