These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 993494)

  • 1. Nitrogen-15 nuclear magnetic resonance spectrum of alumichrome. Detection by a double resonance Fourier transform technique.
    Llinás M; Horsley WJ; Klein MP
    J Am Chem Soc; 1976 Nov; 98(24):7554-8. PubMed ID: 993494
    [No Abstract]   [Full Text] [Related]  

  • 2. A nitrogen-15 spin-lattice relaxation study of alumichrome.
    Llinás M; Wüthrich K
    Biochim Biophys Acta; 1978 Jan; 532(1):29-40. PubMed ID: 620055
    [No Abstract]   [Full Text] [Related]  

  • 3. Peptide hydrogen bonding. Conformation dependence of the carbonyl carbon-13 nuclear magnetic resonance chemical shifts in ferrichrome. A study by 13C-[15N] Fourier double resonance spectroscopy1a.
    Llinás M; Wilson DM; Klein MP
    J Am Chem Soc; 1977 Oct; 99(21):6846-50. PubMed ID: 903527
    [No Abstract]   [Full Text] [Related]  

  • 4. A carbon-13 spin lattice relaxation study of alumichrome at 25.1 MHz and 90.5 MHz.
    Llinás M; Meier W; Wüthrich K
    Biochim Biophys Acta; 1977 May; 492(1):1-11. PubMed ID: 861244
    [No Abstract]   [Full Text] [Related]  

  • 5. Peptide strain. Conformation dependence of the carbon-13 nuclear magnetic resonance chemical shifts in the ferrichromes.
    Llinás M; Wilson DM; Neilands JB
    J Am Chem Soc; 1977 May; 99(11):3631-7. PubMed ID: 858869
    [No Abstract]   [Full Text] [Related]  

  • 6. Complete assignment of carbon signals in a stereospecific peptide via selective and single off-resonance proton decoupling experiments. Analysis of the carbon-13 nuclear magnetic resonance spectrum of alumichrome at 67.88 MHz.
    De Marco A; Llinás M
    Biochemistry; 1979 Sep; 18(18):3846-54. PubMed ID: 486399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amide proton spin-lattice relaxation in polypeptides. A field-dependence study of the proton and nitrogen dipolar interactions in alumichrome.
    Llinás M; Klein MP; Wüthrich K
    Biophys J; 1978 Dec; 24(3):849-62. PubMed ID: 737289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of two alanine containing ferrichromes: sequence determination by proton magnetic resonance.
    Llinás M; Neilands JB
    Biophys Struct Mech; 1976 Aug; 2(2):105-17. PubMed ID: 963232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The solution conformation of the ferrichromes. IV. pH dependence of the individual slow amide hydrogen-deuterium exchange in alumichrome.
    Llinás M; Klein MP; Neilands JB
    J Biol Chem; 1973 Feb; 248(3):915-23. PubMed ID: 4684713
    [No Abstract]   [Full Text] [Related]  

  • 10. Anomalous exchange kinetics of peptide amide protons in aqueous solutions.
    Krauss EM; Cowburn D
    Int J Pept Protein Res; 1981 Jan; 17(1):42-7. PubMed ID: 6164656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrohydroxamate ferrichrome, a biomimetic analogue of ferrichrome.
    Emery T; Emery L; Olsen RK
    Biochem Biophys Res Commun; 1984 Mar; 119(3):1191-7. PubMed ID: 6424674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of ferrichrome reductase in iron metabolism of Ustilago sphaerogena.
    Straka JG; Emery T
    Biochim Biophys Acta; 1979 Aug; 569(2):277-86. PubMed ID: 224934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N5-oxygenase gene.
    Wang J; Budde AD; Leong SA
    J Bacteriol; 1989 May; 171(5):2811-8. PubMed ID: 2523381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siderophore-mediated mechanism of gallium uptake demonstrated in the microorganism Ustilago sphaerogena.
    Emery T; Hoffer PB
    J Nucl Med; 1980 Oct; 21(10):935-9. PubMed ID: 7420194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis.
    Winterberg B; Uhlmann S; Linne U; Lessing F; Marahiel MA; Eichhorn H; Kahmann R; Schirawski J
    Mol Microbiol; 2010 Mar; 75(5):1260-71. PubMed ID: 20070524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solution conformation of the ferrichromes. V. The hydrogen exchange kinetics of ferrichrome analogues; the conformational state of the peptides.
    Llinás M; Klein MP; Neilands JB
    J Biol Chem; 1973 Feb; 248(3):924-31. PubMed ID: 4684714
    [No Abstract]   [Full Text] [Related]  

  • 17. In vitro competition between ferrichrome and phage for the outer membrane T5 receptor complex of Escherichia coli.
    Luckey M; Wayne R; Neilands JB
    Biochem Biophys Res Commun; 1975 May; 64(2):687-93. PubMed ID: 1096882
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena.
    Emery T
    Biochemistry; 1971 Apr; 10(8):1483-8. PubMed ID: 5580666
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of two siderophores in Ustilago sphaerogena. Regulation of biosynthesis and uptake mechanisms.
    Ecker DJ; Passavant CW; Emery T
    Biochim Biophys Acta; 1982 Jun; 720(3):242-9. PubMed ID: 6213273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The solution conformations of ferrichrome and deferriferrichrome determined by 1H-NMR spectroscopy and computational modeling.
    Constantine KL; De Marco A; Madrid M; Brooks CL; Llinás M
    Biopolymers; 1990; 30(3-4):239-56. PubMed ID: 2279065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.