These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 993502)

  • 1. Stereoselective formation of diepoxides by an enzyme system of Pseudomonas oleovorans.
    May SW; Steltenkamp MA; Schwartz RD; McCoy CJ
    J Am Chem Soc; 1976 Nov; 98(24):7856-8. PubMed ID: 993502
    [No Abstract]   [Full Text] [Related]  

  • 2. Stereoselective epoxidation of octadiene catalyzed by an enzyme system of Pseudomonas oleovorans.
    May SW; Schwartz RD
    J Am Chem Soc; 1974 Jun; 96(12):4031-2. PubMed ID: 4854399
    [No Abstract]   [Full Text] [Related]  

  • 3. Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans.
    Schwartz RD
    Appl Microbiol; 1973 Apr; 25(4):574-7. PubMed ID: 4699216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements.
    Schwartz RD; McCoy CJ
    Appl Microbiol; 1973 Aug; 26(2):217-8. PubMed ID: 4743875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic epoxidation. I. Alkene epoxidation by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1230-4. PubMed ID: 4341053
    [No Abstract]   [Full Text] [Related]  

  • 6. Enzymatic epoxidation of trans,trans-1,8-dideuterio-1,7-octadiene. Analysis using partially relaxed proton fourier transform NMR.
    May SW; Gordon SL; Steltenkamp MS
    J Am Chem Soc; 1977 Mar; 99(7):2017-24. PubMed ID: 864128
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans.
    Abbott BJ; Hou CT
    Appl Microbiol; 1973 Jul; 26(1):86-91. PubMed ID: 4726833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    J Biol Chem; 1973 Mar; 248(5):1725-30. PubMed ID: 4348547
    [No Abstract]   [Full Text] [Related]  

  • 9. Structural effects on the reactivity of substrates and inhibitors in the epoxidation system of Pseudomonas oleovorans.
    May SW; Schwartz RD; Abbott BJ; Zaborsky OR
    Biochim Biophys Acta; 1975 Sep; 403(1):245-55. PubMed ID: 1174548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mandelate racemase from Pseudomonas putida. Affinity labeling of the enzyme by D,L-alpha-phenylglycidate in the presence of magnesium ion.
    Fee JA; Hegeman GD; Kenyon GL
    Biochemistry; 1974 Jun; 13(12):2533-8. PubMed ID: 4831902
    [No Abstract]   [Full Text] [Related]  

  • 11. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli.
    Staijen IE; Van Beilen JB; Witholt B
    Eur J Biochem; 2000 Apr; 267(7):1957-65. PubMed ID: 10727934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida.
    Fiedler S; Steinbüchel A; Rehm BH
    Arch Microbiol; 2002 Aug; 178(2):149-60. PubMed ID: 12115060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The AlkB monooxygenase of Pseudomonas oleovorans--synthesis, stability and level in recombinant Escherichia coli and the native host.
    Staijen IE; Hatzimanikatis V; Witholt B
    Eur J Biochem; 1997 Mar; 244(2):462-70. PubMed ID: 9119013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains.
    Kraak MN; Smits TH; Kessler B; Witholt B
    J Bacteriol; 1997 Aug; 179(16):4985-91. PubMed ID: 9260937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Properties of pyruvate carboxylase of the facultative methylotrope Pseudomonas oleovorans].
    Loginova NV; Sokolov AP; Trotsenko IuA
    Biokhimiia; 1982 Oct; 47(10):1629-34. PubMed ID: 7171645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective synthesis of eight-membered cyclic ethers by tandem Nicholas reaction/ring-closing metathesis: a short synthesis of (+)-cis-Lauthisan.
    Ortega N; Martín T; Martín VS
    Org Lett; 2006 Mar; 8(5):871-3. PubMed ID: 16494462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Purification and properties of 3-hexulosephosphate synthase from facultative methylotroph Pseudomonas oleovorans].
    Sokolov AP; Trotsenko YA
    Biokhimiia; 1978 May; 43(5):782-8. PubMed ID: 656502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of aromatic hydroxylation in fungi. Evidence for the formation of arene oxides.
    Boyd DR; Campbell RM; Craig HC; Watson CG; Daly JW; Jerina DM
    J Chem Soc Perkin 1; 1976; (22):2438-43. PubMed ID: 1033945
    [No Abstract]   [Full Text] [Related]  

  • 19. S-stereoselective piperazine-2-tert-butylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel L-amino acid amidase.
    Komeda H; Harada H; Washika S; Sakamoto T; Ueda M; Asano Y
    Eur J Biochem; 2004 Apr; 271(8):1465-75. PubMed ID: 15066172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoselective construction of a beta-isopropenyl alcohol moiety at the C(2) and (3) of kallolide A and pinnatin a using a [2,3] Wittig rearrangement of cyclic furfuryl ethers.
    Tsubuki M; Takahashi K; Honda T
    J Org Chem; 2003 Dec; 68(26):10183-6. PubMed ID: 14682723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.