These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9936058)

  • 1. Raman microprobe observation of intercalate contraction in graphite intercalation compounds.
    McNeil LE; Steinbeck J; Salamanca-Riba L; Dresselhaus G
    Phys Rev B Condens Matter; 1985 Feb; 31(4):2451-2455. PubMed ID: 9936058
    [No Abstract]   [Full Text] [Related]  

  • 2. Preparation of graphite intercalation compounds containing oligo and polyethers.
    Zhang H; Lerner MM
    Nanoscale; 2016 Feb; 8(8):4608-12. PubMed ID: 26847933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zone-center phonon frequencies for graphite and graphite intercalation compounds: Charge-transfer and intercalate-coupling effects.
    Chan CT; Ho KM; Kamitakahara WA
    Phys Rev B Condens Matter; 1987 Aug; 36(6):3499-3502. PubMed ID: 9943277
    [No Abstract]   [Full Text] [Related]  

  • 4. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability.
    Zhao W; Tan PH; Liu J; Ferrari AC
    J Am Chem Soc; 2011 Apr; 133(15):5941-6. PubMed ID: 21434632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.
    Seiler S; Halbig CE; Grote F; Rietsch P; Börrnert F; Kaiser U; Meyer B; Eigler S
    Nat Commun; 2018 Feb; 9(1):836. PubMed ID: 29483555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution scanning-ion-microprobe study of graphite and its intercalation compounds.
    Levi-Setti R; Crow G; Wang YL; Parker NW; Mittleman R; Hwang DM
    Phys Rev Lett; 1985 Jun; 54(24):2615-2618. PubMed ID: 10031391
    [No Abstract]   [Full Text] [Related]  

  • 7. Comment on "High-resolution scanning-ion-microprobe study of graphite and its intercalation compounds".
    Bretz M; Clarke R
    Phys Rev Lett; 1985 Nov; 55(22):2506. PubMed ID: 10032162
    [No Abstract]   [Full Text] [Related]  

  • 8. In-plane intercalate dynamics in alkali-metal graphite intercalation compounds.
    Kamitakahara WA; Zabel H
    Phys Rev B Condens Matter; 1985 Dec; 32(12):7817-7825. PubMed ID: 9936953
    [No Abstract]   [Full Text] [Related]  

  • 9. Preparation of a homologous series of tetraalkylammonium graphite intercalation compounds.
    Sirisaksoontorn W; Lerner MM
    Inorg Chem; 2013 Jun; 52(12):7139-44. PubMed ID: 23724803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pillared graphite anodes for reversible sodiation.
    Zhang H; Li Z; Xu W; Chen Y; Ji X; Lerner MM
    Nanotechnology; 2018 Aug; 29(32):325402. PubMed ID: 29785969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra.
    Dimiev AM; Bachilo SM; Saito R; Tour JM
    ACS Nano; 2012 Sep; 6(9):7842-9. PubMed ID: 22880798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ imaging of Li intercalation in graphite particles in an Li-ion battery.
    Takata K
    J Microsc; 2017 Jun; 266(3):249-252. PubMed ID: 28199001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes.
    Song HY; Fukutsuka T; Miyazaki K; Abe T
    Phys Chem Chem Phys; 2016 Oct; 18(39):27486-27492. PubMed ID: 27711581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties.
    Chen X; Meng F; Zhou Z; Tian X; Shan L; Zhu S; Xu X; Jiang M; Wang L; Hui D; Wang Y; Lu J; Gou J
    Nanoscale; 2014 Jul; 6(14):8140-8. PubMed ID: 24922345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ Raman study of lithium-ion intercalation into microcrystalline graphite.
    Sole C; Drewett NE; Hardwick LJ
    Faraday Discuss; 2014; 172():223-37. PubMed ID: 25427224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium-Ion Intercalation into Graphite in SO
    Kim A; Jung H; Song J; Kim HJ; Jeong G; Kim H
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9054-9061. PubMed ID: 30735029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses.
    Zou J; Sole C; Drewett NE; Velický M; Hardwick LJ
    J Phys Chem Lett; 2016 Nov; 7(21):4291-4296. PubMed ID: 27740774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of the Kaolinite Hydroxyl Surfaces through Intercalation with Potassium Acetate under Pressure.
    Frost RL; Kristof J; Paroz GN; Kloprogge JT
    J Colloid Interface Sci; 1998 Dec; 208(2):478-486. PubMed ID: 9845692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman scattering study of the high-frequency graphitic intralayer modes in Li-graphite and the stage dependence of the mode frequency in donor graphite intercalation compounds.
    Doll GL; Eklund PC; Fischer JE
    Phys Rev B Condens Matter; 1987 Sep; 36(9):4940-4945. PubMed ID: 9943512
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.