These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 9936727)
1. Violation of sum rules by random-phase-approximation surface response calculations based on a density-functional ground-state description. Liebsch A Phys Rev B Condens Matter; 1985 Nov; 32(10):6255-6260. PubMed ID: 9936727 [No Abstract] [Full Text] [Related]
2. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional. Ziegler T; Krykunov M; Autschbach J J Chem Theory Comput; 2014 Sep; 10(9):3980-6. PubMed ID: 26588541 [TBL] [Abstract][Full Text] [Related]
3. Comparison between the vorticity expansion approximation and the local density approximation of the current-density functional theory from the viewpoint of sum rules. Higuchi K; Higuchi M J Phys Condens Matter; 2007 Sep; 19(36):365216. PubMed ID: 21694161 [TBL] [Abstract][Full Text] [Related]
4. Random-phase-approximation-based correlation energy functionals: benchmark results for atoms. Jiang H; Engel E J Chem Phys; 2007 Nov; 127(18):184108. PubMed ID: 18020631 [TBL] [Abstract][Full Text] [Related]
5. Ab Initio Optoelectronic Properties of Silicon Nanoparticles: Excitation Energies, Sum Rules, and Tamm-Dancoff Approximation. Rocca D; Vörös M; Gali A; Galli G J Chem Theory Comput; 2014 Aug; 10(8):3290-8. PubMed ID: 26588298 [TBL] [Abstract][Full Text] [Related]
6. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation. Isegawa M; Truhlar DG J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212 [TBL] [Abstract][Full Text] [Related]
7. Correlation Matrix Renormalization Theory: Improving Accuracy with Two-Electron Density-Matrix Sum Rules. Liu C; Liu J; Yao YX; Wu P; Wang CZ; Ho KM J Chem Theory Comput; 2016 Oct; 12(10):4806-4811. PubMed ID: 27564237 [TBL] [Abstract][Full Text] [Related]
9. Surface collective oscillations of metal clusters and spheres: Random-phase-approximation sum-rules approach. Serra L; Garcias F; Barranco M; Navarro J; Balbás C; Maanes A Phys Rev B Condens Matter; 1989 Apr; 39(12):8247-8256. PubMed ID: 9947534 [No Abstract] [Full Text] [Related]
10. Expectation values of single-particle operators in the random phase approximation ground state. Kosov DS J Chem Phys; 2017 Feb; 146(5):054103. PubMed ID: 28178844 [TBL] [Abstract][Full Text] [Related]
11. Static correlation beyond the random phase approximation: dissociating H2 with the Bethe-Salpeter equation and time-dependent GW. Olsen T; Thygesen KS J Chem Phys; 2014 Apr; 140(16):164116. PubMed ID: 24784262 [TBL] [Abstract][Full Text] [Related]
12. Frontier orbital description of the Si(100) surface: a route to symmetry-allowed and concerted [2 + 2] cycloadditions. Ryan PM; Teague LC; Boland JJ J Am Chem Soc; 2009 May; 131(19):6768-74. PubMed ID: 19397327 [TBL] [Abstract][Full Text] [Related]
13. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange. Heßelmann A J Chem Theory Comput; 2015 Apr; 11(4):1607-20. PubMed ID: 26574370 [TBL] [Abstract][Full Text] [Related]
14. Ground-state correlation effects in extended random phase approximation calculations. Mariano A; Krmpotic F; de Toledo Piza AF Phys Rev C Nucl Phys; 1994 May; 49(5):2824-2827. PubMed ID: 9969539 [No Abstract] [Full Text] [Related]
15. Many-body GW calculations of ground-state properties: quasi-2D electron systems and van der Waals forces. García-González P; Godby RW Phys Rev Lett; 2002 Feb; 88(5):056406. PubMed ID: 11863760 [TBL] [Abstract][Full Text] [Related]
16. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory. Göltl F; Grüneis A; Bučko T; Hafner J J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253 [TBL] [Abstract][Full Text] [Related]
17. Comparative assessment of density functional methods for evaluating essential parameters to simulate SERS spectra within the excited state energy gradient approximation. Mohammadpour M; Jamshidi Z J Chem Phys; 2016 May; 144(19):194302. PubMed ID: 27208944 [TBL] [Abstract][Full Text] [Related]
18. Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory. Neugebauer J; Hess BA J Chem Phys; 2004 Jun; 120(24):11564-77. PubMed ID: 15268191 [TBL] [Abstract][Full Text] [Related]
19. Full dimensional potential energy surface for the ground state of H4(+) system based on triatomic-in-molecules formalism. Sanz-Sanz C; Roncero O; Paniagua M; Aguado A J Chem Phys; 2013 Nov; 139(18):184302. PubMed ID: 24320269 [TBL] [Abstract][Full Text] [Related]
20. Modeling core-level excitations with variationally optimized reduced-density matrices and the extended random phase approximation. Maradzike E; DePrince AE J Chem Phys; 2018 Dec; 149(23):234101. PubMed ID: 30579305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]