These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9936764)

  • 1. Cody disorder: Absorption-edge relationships in hydrogenated amorphous silicon.
    Ravindra NM; Demichelis F
    Phys Rev B Condens Matter; 1985 Nov; 32(10):6591-6595. PubMed ID: 9936764
    [No Abstract]   [Full Text] [Related]  

  • 2. Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers.
    Mehta P; Healy N; Baril NF; Sazio PJ; Badding JV; Peacock AC
    Opt Express; 2010 Aug; 18(16):16826-31. PubMed ID: 20721074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of high-temperature annealing on the optical-absorption edge of hydrogenated amorphous silicon-carbon films.
    Zhang F; Xue H; Song Z; Guo Y; Chen G
    Phys Rev B Condens Matter; 1992 Aug; 46(8):4590-4594. PubMed ID: 10004214
    [No Abstract]   [Full Text] [Related]  

  • 4. Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime.
    Shen L; Healy N; Mehta P; Day TD; Sparks JR; Badding JV; Peacock AC
    Opt Express; 2013 Jun; 21(11):13075-83. PubMed ID: 23736561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide.
    Shoji Y; Ogasawara T; Kamei T; Sakakibara Y; Suda S; Kintaka K; Kawashima H; Okano M; Hasama T; Ishikawa H; Mori M
    Opt Express; 2010 Mar; 18(6):5668-73. PubMed ID: 20389582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical-absorption edge and disorder effects in hydrogenated amorphous diamondlike carbon films.
    Datta T; Woollam JA; Notohamiprodjo W
    Phys Rev B Condens Matter; 1989 Sep; 40(9):5956-5960. PubMed ID: 9992658
    [No Abstract]   [Full Text] [Related]  

  • 7. In situ thickness control during plasma deposition of hydrogenated amorphous silicon films by time-resolved microwave conductivity measurements.
    Neitzert HC; Hirsch W; Kunst M; Nell ME
    Appl Opt; 1995 Feb; 34(4):676-80. PubMed ID: 20963168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis.
    Zhu G; Shan Y; Lin T; Zhao W; Xu J; Tian Z; Zhang H; Zheng C; Huang F
    Nanoscale; 2016 Feb; 8(8):4705-12. PubMed ID: 26858035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 29Si nuclear magnetic resonance of amorphous hydrogenated silicon and amorphous microcrystalline mixed-phase hydrogenated silicon.
    Hayashi S; Hayamizu K; Yamasaki S; Matsuda A; Tanaka K
    Phys Rev B Condens Matter; 1987 Apr; 35(10):4581-4590. PubMed ID: 9940627
    [No Abstract]   [Full Text] [Related]  

  • 10. Optical nonlinearities in hydrogenated-amorphous silicon waveguides.
    Narayanan K; Preble SF
    Opt Express; 2010 Apr; 18(9):8998-9005. PubMed ID: 20588745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-field electron-drift measurements and the mobility edge in hydrogenated amorphous silicon.
    Gu Q; Schiff EA; Chévrier JB; Equer B
    Phys Rev B Condens Matter; 1995 Aug; 52(8):5695-5707. PubMed ID: 9981756
    [No Abstract]   [Full Text] [Related]  

  • 12. Modelling amorphous silicon with hydrogenated defects: GW treatment of the ST12 phase.
    Fisker C; Trolle ML; Pedersen TG
    J Phys Condens Matter; 2012 Aug; 24(32):325803, 1-6. PubMed ID: 22785043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of correlated photons in hydrogenated amorphous-silicon waveguides.
    Clemmen S; Perret A; Selvaraja SK; Bogaerts W; van Thourhout D; Baets R; Emplit P; Massar S
    Opt Lett; 2010 Oct; 35(20):3483-5. PubMed ID: 20967107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacancies, microstructure and the moments of nuclear magnetic resonance: the case of hydrogenated amorphous silicon.
    Biswas P; Timilsina R
    J Phys Condens Matter; 2011 Feb; 23(6):065801. PubMed ID: 21406933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of passive generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires.
    Mei C; Li F; Yuan J; Kang Z; Zhang X; Yan B; Sang X; Wu Q; Zhou X; Zhong K; Wang L; Wang K; Yu C; Wai PKA
    Sci Rep; 2017 Jun; 7(1):3814. PubMed ID: 28630483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides.
    Kuyken B; Clemmen S; Selvaraja SK; Bogaerts W; Van Thourhout D; Emplit P; Massar S; Roelkens G; Baets R
    Opt Lett; 2011 Feb; 36(4):552-4. PubMed ID: 21326453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement and inhibition of photolumincescence in hydrogenated amorphous silicon nitride microcavities.
    Serpenguzel A; Aydinli A; Bek A
    Opt Express; 1997 Sep; 1(5):108-13. PubMed ID: 19373389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon.
    Yang J; Bhattacharya P
    Opt Express; 2008 Mar; 16(7):5136-40. PubMed ID: 18542613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides.
    Narayanan K; Elshaari AW; Preble SF
    Opt Express; 2010 May; 18(10):9809-14. PubMed ID: 20588830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay.
    Suda S; Tanizawa K; Sakakibara Y; Kamei T; Nakanishi K; Itoga E; Ogasawara T; Takei R; Kawashima H; Namiki S; Mori M; Hasama T; Ishikawa H
    Opt Lett; 2012 Apr; 37(8):1382-4. PubMed ID: 22513693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.