These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9937152)

  • 21. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.
    Behara DK; Ummireddi AK; Aragonda V; Gupta PK; Pala RG; Sivakumar S
    Phys Chem Chem Phys; 2016 Mar; 18(12):8364-77. PubMed ID: 26898750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides.
    Narayanan K; Elshaari AW; Preble SF
    Opt Express; 2010 May; 18(10):9809-14. PubMed ID: 20588830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon.
    Mailoa JP; Akey AJ; Simmons CB; Hutchinson D; Mathews J; Sullivan JT; Recht D; Winkler MT; Williams JS; Warrender JM; Persans PD; Aziz MJ; Buonassisi T
    Nat Commun; 2014; 5():3011. PubMed ID: 24385050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure and electronic properties of hydrogenated amorphous silicon-carbon alloys.
    Yacobi BG; von Roedern B ; Mahan AH; Jones KM
    Phys Rev B Condens Matter; 1985 Jun; 31(12):8257-8258. PubMed ID: 9935781
    [No Abstract]   [Full Text] [Related]  

  • 25. Atomic bonding in amorphous hydrogenated silicon carbide alloys: A statistical thermodynamic approach.
    Efstathiadis H; Yin Z; Smith FW
    Phys Rev B Condens Matter; 1992 Nov; 46(20):13119-13130. PubMed ID: 10003351
    [No Abstract]   [Full Text] [Related]  

  • 26. Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys.
    Maley N
    Phys Rev B Condens Matter; 1992 Jul; 46(4):2078-2085. PubMed ID: 10003883
    [No Abstract]   [Full Text] [Related]  

  • 27. Nonlinear photocarrier drift in hydrogenated amorphous silicon-germanium alloys.
    Antoniadis H; Schiff EA
    Phys Rev B Condens Matter; 1991 Jun; 43(17):13957-13966. PubMed ID: 9997263
    [No Abstract]   [Full Text] [Related]  

  • 28. Spin-dependent photoconductivity in hydrogenated amorphous germanium and silicon-germanium alloys.
    Graeff CF; Stutzmann M; Brandt MS
    Phys Rev B Condens Matter; 1994 Apr; 49(16):11028-11034. PubMed ID: 10009948
    [No Abstract]   [Full Text] [Related]  

  • 29. Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys.
    Yin Z; Smith FW
    Phys Rev B Condens Matter; 1990 Aug; 42(6):3658-3665. PubMed ID: 9995880
    [No Abstract]   [Full Text] [Related]  

  • 30. Defects in hydrogenated amorphous silicon-germanium alloys studied by photomodulation spectroscopy.
    Chen L; Tauc J; Lee J; Schiff EA
    Phys Rev B Condens Matter; 1991 May; 43(14):11694-11702. PubMed ID: 9996940
    [No Abstract]   [Full Text] [Related]  

  • 31. Thermal equilibration of surface defects in hydrogenated amorphous silicon-germanium alloys.
    Aljishi S; Jin S; Ley L; Wagner S
    Phys Rev Lett; 1990 Jul; 65(5):629-632. PubMed ID: 10042972
    [No Abstract]   [Full Text] [Related]  

  • 32. Vacancies, microstructure and the moments of nuclear magnetic resonance: the case of hydrogenated amorphous silicon.
    Biswas P; Timilsina R
    J Phys Condens Matter; 2011 Feb; 23(6):065801. PubMed ID: 21406933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly sensitive and reusable fluorescence microarrays based on hydrogenated amorphous silicon-carbon alloys.
    Touahir L; Moraillon A; Allongue P; Chazalviel JN; Henry de Villeneuve C; Ozanam F; Solomon I; Gouget-Laemmel AC
    Biosens Bioelectron; 2009 Dec; 25(4):952-5. PubMed ID: 19781934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.
    Mughal A; El Demellawi JK; Chaieb S
    Phys Chem Chem Phys; 2014 Dec; 16(46):25273-9. PubMed ID: 25242565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorinated hydrogenated amorphous silicon alloys. II. Electronic structure of pure and fluorinated silane chains.
    Agrawal S; Agrawal BK
    Phys Rev B Condens Matter; 1985 Apr; 31(8):5355-5365. PubMed ID: 9936501
    [No Abstract]   [Full Text] [Related]  

  • 36. Band structure of hydrogenated Si nanosheets and nanotubes.
    Guzmán-Verri GG; Lew Yan Voon LC
    J Phys Condens Matter; 2011 Apr; 23(14):145502. PubMed ID: 21430307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source.
    Dave UD; Uvin S; Kuyken B; Selvaraja S; Leo F; Roelkens G
    Opt Express; 2013 Dec; 21(26):32032-9. PubMed ID: 24514798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators.
    Pelc JS; Rivoire K; Vo S; Santori C; Fattal DA; Beausoleil RG
    Opt Express; 2014 Feb; 22(4):3797-810. PubMed ID: 24663700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of recombination coefficients for nanocrystalline silicon embedded in hydrogenated amorphous silicon.
    He W; Zakar A; Roger T; Yurkevich IV; Kaplan A
    Opt Lett; 2015 Aug; 40(16):3889-92. PubMed ID: 26274686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling the mechanism of 720 nm sub-band-gap optical absorption of a Ta3N5 semiconductor photocatalyst: a hybrid-DFT calculation.
    Wang J; Ma A; Li Z; Jiang J; Feng J; Zou Z
    Phys Chem Chem Phys; 2015 Mar; 17(12):8166-71. PubMed ID: 25729786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.