These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9937495)

  • 1. Acoustical polaron in three dimensions: The ground-state energy and the self-trapping transition.
    Peeters FM; Devreese JT
    Phys Rev B Condens Matter; 1985 Sep; 32(6):3515-3521. PubMed ID: 9937495
    [No Abstract]   [Full Text] [Related]  

  • 2. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe
    Carneiro LM; Cushing SK; Liu C; Su Y; Yang P; Alivisatos AP; Leone SR
    Nat Mater; 2017 Aug; 16(8):819-825. PubMed ID: 28692042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy of the Fröhlich polaron in two and three dimensions.
    Titantah JT; Pierleoni C; Ciuchi S
    Phys Rev Lett; 2001 Nov; 87(20):206406. PubMed ID: 11690499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustical polaron in three dimensions: The impedance function.
    Peeters FM; Devreese JT
    Phys Rev B Condens Matter; 1987 Mar; 35(8):3745-3752. PubMed ID: 9941894
    [No Abstract]   [Full Text] [Related]  

  • 5. Femtosecond dynamics of exciton localization: self-trapping from the small to the large polaron limit.
    Morrissey FX; Mance JG; Van Pelt AD; Dexheimer SL
    J Phys Condens Matter; 2013 Apr; 25(14):144204. PubMed ID: 23478998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polaron ground-state energy in d dimensions.
    Ganbold G; Efimov GV
    Phys Rev B Condens Matter; 1994 Aug; 50(6):3733-3745. PubMed ID: 9976651
    [No Abstract]   [Full Text] [Related]  

  • 7. Polaron ground-state energy in two dimensions.
    Larsen DM
    Phys Rev B Condens Matter; 1987 Mar; 35(9):4435-4437. PubMed ID: 9941998
    [No Abstract]   [Full Text] [Related]  

  • 8. Ground-state energy of a polaron in n dimensions.
    Peeters FM; Xiaoguang W; Devreese JT
    Phys Rev B Condens Matter; 1986 Mar; 33(6):3926-3934. PubMed ID: 9938807
    [No Abstract]   [Full Text] [Related]  

  • 9. Exact and approximate results for the ground-state energy of a Fröhlich polaron in two dimensions.
    Xiaoguang W; Peeters FM; Devreese JT
    Phys Rev B Condens Matter; 1985 Mar; 31(6):3420-3426. PubMed ID: 9936231
    [No Abstract]   [Full Text] [Related]  

  • 10. Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.
    Muñoz Ramo D; Shluger AL; Gavartin JL; Bersuker G
    Phys Rev Lett; 2007 Oct; 99(15):155504. PubMed ID: 17995181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio Lattice Results for Fermi Polarons in Two Dimensions.
    Bour S; Lee D; Hammer HW; Meißner UG
    Phys Rev Lett; 2015 Oct; 115(18):185301. PubMed ID: 26565472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep localized distortion of alternating bonds and reduced transport of charged carriers in conjugated polymers under photoexcitation.
    Wang C; Jiang DY; Chen RA; Li S; George TF
    Nanoscale; 2015 Jan; 7(2):479-86. PubMed ID: 25407625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of long oligothiophene dications: bipolaron vs polaron pair vs triplet state.
    Zade SS; Bendikov M
    J Phys Chem B; 2006 Aug; 110(32):15839-46. PubMed ID: 16898734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers.
    Baresch D; Thomas JL; Marchiano R
    Phys Rev Lett; 2016 Jan; 116(2):024301. PubMed ID: 26824541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models.
    Falvo C
    J Chem Phys; 2018 Feb; 148(7):074103. PubMed ID: 29471642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical absorption from solvation-induced polarons on nanotubes.
    Ussery GL; Gartstein YN
    J Chem Phys; 2009 Jan; 130(1):014701. PubMed ID: 19140625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of exciton-polaron transition in molecular assemblies: the variational approach.
    Chorošajev V; Gelzinis A; Valkunas L; Abramavicius D
    J Chem Phys; 2014 Jun; 140(24):244108. PubMed ID: 24985619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of polaron formation on exciton dissociation.
    Li G
    Phys Chem Chem Phys; 2015 May; 17(17):11553-9. PubMed ID: 25857642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new variational calculation for N-dimensional polarons in the strong-coupling limit.
    Qinghu C; Minghu F; Qirui Z; Kelin W; Shaolong W
    J Phys Condens Matter; 1996 Sep; 8(38):7139-45. PubMed ID: 22146242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the Lany-Zunger polaron correction for calculating surface charge trapping.
    Farzalipour Tabriz M; Aradi B; Frauenheim T; Deák P
    J Phys Condens Matter; 2017 Oct; 29(39):394001. PubMed ID: 28691921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.