These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9938070)

  • 1. Lattice-dynamical model for graphite and its alkali-metal intercalation compounds.
    Gupta HC; Malhotra J; Rani N; Tripathi BB
    Phys Rev B Condens Matter; 1986 May; 33(10):7285-7287. PubMed ID: 9938070
    [No Abstract]   [Full Text] [Related]  

  • 2. Preparation of Graphite Intercalation Compounds Containing Crown Ethers.
    Zhang H; Lerner MM
    Inorg Chem; 2016 Sep; 55(17):8281-4. PubMed ID: 27525670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of ternary and quaternary graphite intercalation compounds containing alkali metal cations and diamines.
    Maluangnont T; Lerner MM; Gotoh K
    Inorg Chem; 2011 Nov; 50(22):11676-82. PubMed ID: 22010603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of graphite intercalation compounds containing oligo and polyethers.
    Zhang H; Lerner MM
    Nanoscale; 2016 Feb; 8(8):4608-12. PubMed ID: 26847933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray intensity calculation in alkali-metal graphite intercalation compounds: Discommensuration-domain model.
    Suzuki M
    Phys Rev B Condens Matter; 1986 Jan; 33(2):1386-1393. PubMed ID: 9938409
    [No Abstract]   [Full Text] [Related]  

  • 6. Effective and Debye temperatures of alkali-metal atoms in graphite intercalation compounds.
    Moreh R; Shnieg N; Zabel H
    Phys Rev B Condens Matter; 1991 Jul; 44(3):1311-1317. PubMed ID: 9999644
    [No Abstract]   [Full Text] [Related]  

  • 7. In-plane intercalate dynamics in alkali-metal graphite intercalation compounds.
    Kamitakahara WA; Zabel H
    Phys Rev B Condens Matter; 1985 Dec; 32(12):7817-7825. PubMed ID: 9936953
    [No Abstract]   [Full Text] [Related]  

  • 8. Atomic-resolution scanning-tunneling-microscopy investigations of alkali-metal-graphite intercalation compounds.
    Kelty SP; Lieber CM
    Phys Rev B Condens Matter; 1989 Sep; 40(8):5856-5859. PubMed ID: 9992640
    [No Abstract]   [Full Text] [Related]  

  • 9. Low-temperature specific heat of hydrogen-chemisorbed graphite-alkali-metal intercalation compounds.
    Enoki T; Sano M; Inokuchi H
    Phys Rev B Condens Matter; 1985 Aug; 32(4):2497-2505. PubMed ID: 9937324
    [No Abstract]   [Full Text] [Related]  

  • 10. Clean-surface study of stage-1 alkali-metal graphite intercalation compounds by scanning tunneling microscopy.
    Kinno T; Watanabe MO; Mizushima K
    Phys Rev B Condens Matter; 1995 Oct; 52(16):11669-11671. PubMed ID: 9980297
    [No Abstract]   [Full Text] [Related]  

  • 11. Local symmetry breaking in stage-1 alkali-metal-graphite intercalation compounds studied by scanning tunneling microscopy.
    Anselmetti D; Geiser V; Overney G; Wiesendanger R; Güntherodt H
    Phys Rev B Condens Matter; 1990 Jul; 42(3):1848-1851. PubMed ID: 9995621
    [No Abstract]   [Full Text] [Related]  

  • 12. Atomic-resolution surface studies of binary and ternary alkali-metal-graphite intercalation compounds by scanning tunneling microscopy.
    Lang HP; Wiesendanger R; Thommen-Geiser V; Güntherodt H
    Phys Rev B Condens Matter; 1992 Jan; 45(4):1829-1837. PubMed ID: 10001685
    [No Abstract]   [Full Text] [Related]  

  • 13. Building alkali-metal-halide layers within a perovskite host by sequential intercalation: (A(2)Cl)LaNb(2)O(7) (A = Rb, Cs).
    Choi J; Zhang X; Wiley JB
    Inorg Chem; 2009 Jun; 48(11):4811-6. PubMed ID: 19466802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.
    Seiler S; Halbig CE; Grote F; Rietsch P; Börrnert F; Kaiser U; Meyer B; Eigler S
    Nat Commun; 2018 Feb; 9(1):836. PubMed ID: 29483555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries.
    Kim H; Yoon G; Lim K; Kang K
    Chem Commun (Camb); 2016 Oct; 52(85):12618-12621. PubMed ID: 27709171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Energy Surfaces and Charge Transfer of PAH-Sodium-PAH Complexes.
    Hjertenaes E; Andersson S; Koch H
    Chemphyschem; 2016 Sep; 17(18):2908-15. PubMed ID: 27303941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical study of graphite and graphite intercalation compounds.
    Lang L; Doyen-Lang S; Charlier A; Charlier MF
    Phys Rev B Condens Matter; 1994 Feb; 49(8):5672-5681. PubMed ID: 10011526
    [No Abstract]   [Full Text] [Related]  

  • 18. Nanotribological Properties of Graphite Intercalation Compounds: AFM Studies.
    Chen Z; Guo D; Si L; Xie G
    Scanning; 2017; 2017():9438573. PubMed ID: 29230257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why h atom prefers the on-top site and alkali metals favor the middle hollow site on the Basal plane of graphite.
    Zhu ZH; Lu GQ; Wang FY
    J Phys Chem B; 2005 Apr; 109(16):7923-7. PubMed ID: 16851924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.