These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 9938256)

  • 1. Band-gap shifts in heavily doped n-type GaAs.
    Sernelius BE
    Phys Rev B Condens Matter; 1986 Jun; 33(12):8582-8586. PubMed ID: 9938256
    [No Abstract]   [Full Text] [Related]  

  • 2. Band-gap shifts in heavily p-type doped semiconductors of the zinc-blende and diamond type.
    Sernelius BE
    Phys Rev B Condens Matter; 1986 Oct; 34(8):5610-5620. PubMed ID: 9940396
    [No Abstract]   [Full Text] [Related]  

  • 3. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.
    Zhang SJ; Lin SS; Li XQ; Liu XY; Wu HA; Xu WL; Wang P; Wu ZQ; Zhong HK; Xu ZJ
    Nanoscale; 2016 Jan; 8(1):226-32. PubMed ID: 26646647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band-to-band photoluminescence and luminescence excitation in extremely heavily carbon-doped epitaxial GaAs.
    Wang L; Haegel NM; Lowney JR
    Phys Rev B Condens Matter; 1994 Apr; 49(16):10976-10985. PubMed ID: 10009940
    [No Abstract]   [Full Text] [Related]  

  • 5. Absorption near band edges in heavily doped GaAs.
    Sritrakool W; Sa-yakanit V; Glyde HR
    Phys Rev B Condens Matter; 1985 Jul; 32(2):1090-1100. PubMed ID: 9937121
    [No Abstract]   [Full Text] [Related]  

  • 6. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures.
    Lysov A; Offer M; Gutsche C; Regolin I; Topaloglu S; Geller M; Prost W; Tegude FJ
    Nanotechnology; 2011 Feb; 22(8):085702. PubMed ID: 21242617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of graded band-gap structures on spectral response of AlGaAs/GaAs photocathodes.
    Zou J; Zhang Y; Deng W; Peng X; Jiang S; Chang B
    Appl Opt; 2015 Oct; 54(28):8521-5. PubMed ID: 26479629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermi enhancement and band-gap renormalization of AlxGa1-xAs/GaAs modulation-doped quantum wells.
    Haacke S; Zimmermann R; Bimberg D; Kal H; Mars DE; Miller JN
    Phys Rev B Condens Matter; 1992 Jan; 45(4):1736-1741. PubMed ID: 10001674
    [No Abstract]   [Full Text] [Related]  

  • 9. Mutual passivation of donors and isovalent nitrogen in GaAs.
    Li J; Carrier P; Wei SH; Li SS; Xia JB
    Phys Rev Lett; 2006 Jan; 96(3):035505. PubMed ID: 16486726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of electrolyte electroreflectance of heavily doped n-type GaAs.
    Gilman JM; Hutton R; Hamnett A; Peter LM
    Phys Rev B Condens Matter; 1993 May; 47(20):13453-13461. PubMed ID: 10005653
    [No Abstract]   [Full Text] [Related]  

  • 11. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.
    Shen J; Song Y; Lee ML; Cha JJ
    Nanotechnology; 2014 Nov; 25(46):465702. PubMed ID: 25354930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intersubband optical absorption in heavily doped n-type GaAs/Al0.3Ga0.7As multiple quantum wells.
    Jogai B; Manasreh MO; Stutz CE; Whitney RL; Kinell DK
    Phys Rev B Condens Matter; 1992 Sep; 46(11):7208-7211. PubMed ID: 10002434
    [No Abstract]   [Full Text] [Related]  

  • 13. Sudden restoration of the band ordering associated with the ferromagnetic phase transition in a semiconductor.
    Muneta I; Ohya S; Terada H; Tanaka M
    Nat Commun; 2016 Jun; 7():12013. PubMed ID: 27349454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transport in n- and p-type modulation doped Ga(x)In(1-x)N(y)As(1-y)/ GaAs quantum wells.
    Sun Y; Balkan N; Aslan M; Lisesivdin SB; Carrere H; Arikan MC; Marie X
    J Phys Condens Matter; 2009 Apr; 21(17):174210. PubMed ID: 21825414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of doped photocatalysts for organic pollutant degradation - A review.
    Khaki MRD; Shafeeyan MS; Raman AAA; Daud WMAW
    J Environ Manage; 2017 Aug; 198(Pt 2):78-94. PubMed ID: 28501610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the interface quality between HfO2 and GaAs via in situ ZnO passivation using atomic layer deposition.
    Byun YC; Choi S; An Y; McIntyre PC; Kim H
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10482-8. PubMed ID: 24911531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive Q-switching with GaAs or Bi-doped GaAs saturable absorber in Tm:LuAG laser operating at 2μm wavelength.
    Wu L; Li D; Zhao S; Yang K; Li X; Wang R; Liu J
    Opt Express; 2015 Jun; 23(12):15469-76. PubMed ID: 26193527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavily doped semiconductor nanocrystal quantum dots.
    Mocatta D; Cohen G; Schattner J; Millo O; Rabani E; Banin U
    Science; 2011 Apr; 332(6025):77-81. PubMed ID: 21454783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sn-seeded GaAs nanowires grown by MOVPE.
    Sun R; Vainorius N; Jacobsson D; Pistol ME; Lehmann S; Dick KA
    Nanotechnology; 2016 May; 27(21):215603. PubMed ID: 27087548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the DX center in heavily doped n-GaAs.
    Maude DK; Portal JC; Dmowski L; Foster T; Eaves L; Nathan M; Heiblum M; Harris JJ; Beall RB
    Phys Rev Lett; 1987 Aug; 59(7):815-818. PubMed ID: 10035878
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.