These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9939646)

  • 1. Dynamics of photoexcited carriers sinking into an enlarged well in a GaAs/AlAs short-period superlattice.
    Nakamura A; Fujiwara K; Tokuda Y; Nakayama T; Hirai M
    Phys Rev B Condens Matter; 1986 Dec; 34(12):9019-9022. PubMed ID: 9939646
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures.
    Jiang M; Xiao HY; Peng SM; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2018 Jan; 8(1):2012. PubMed ID: 29386543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Study of Point Defects in GaAs/AlAs Superlattice: the Phase Stability and the Effects on the Band Structure and Carrier Mobility.
    Jiang M; Xiao H; Peng S; Qiao L; Yang G; Liu Z; Zu X
    Nanoscale Res Lett; 2018 Sep; 13(1):301. PubMed ID: 30259329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and electronic properties of bulk GaAs, bulk AlAs, and the (GaAs)1(AlAs)1 superlattice.
    Min BI; Massidda S; Freeman AJ
    Phys Rev B Condens Matter; 1988 Jul; 38(3):1970-1977. PubMed ID: 9946483
    [No Abstract]   [Full Text] [Related]  

  • 5. Correspondence between the dependence of frequencies and intensities of GaAs and AlAs longitudinal-optical modes on the photon energy in a thin-layer GaAs-AlAs superlattice.
    Gridin VV; Beserman R; Morkoç H
    Phys Rev B Condens Matter; 1989 Jan; 39(3):1703-1707. PubMed ID: 9948386
    [No Abstract]   [Full Text] [Related]  

  • 6. Localized indirect excitons in a short-period GaAs/AlAs superlattice.
    Minami F; Hirata K; Era K; Yao T; Masumoto Y
    Phys Rev B Condens Matter; 1987 Aug; 36(5):2875-2878. PubMed ID: 9943176
    [No Abstract]   [Full Text] [Related]  

  • 7. Perpendicular transport of photoexcited electrons and holes in GaAs/AlAs short-period superlattices: Barrier-thickness and temperature dependence.
    Fujiwara K; Tsukada N; Nakayama T; Nakamura A
    Phys Rev B Condens Matter; 1989 Jul; 40(2):1096-1101. PubMed ID: 9991932
    [No Abstract]   [Full Text] [Related]  

  • 8. Indirect tunneling in a short GaAs-AlAs superlattice detected by photoluminescence under hydrostatic pressure.
    Burdis MS; Phillips RT; Couch NR; Kelly MJ
    Phys Rev B Condens Matter; 1990 Feb; 41(5):2855-2860. PubMed ID: 9994051
    [No Abstract]   [Full Text] [Related]  

  • 9. Stark localization of a pair of coupled minibands in a GaAs/AlAs double-period superlattice.
    Schneider H; Kawashima K; Fujiwara K
    Phys Rev B Condens Matter; 1991 Sep; 44(11):5943-5946. PubMed ID: 9998450
    [No Abstract]   [Full Text] [Related]  

  • 10. Resonant Raman studies of confined LO modes and interface modes in a small-period GaAs/AlAs superlattice.
    Gant TA; Delaney M; Klein MV; Houdré R; Morkoç H
    Phys Rev B Condens Matter; 1989 Jan; 39(3):1696-1702. PubMed ID: 9948385
    [No Abstract]   [Full Text] [Related]  

  • 11. Erratum: Resonant Raman studies of confined LO modes and interface modes in a small-period GaAs/AlAs superlattice.
    Gant TA; Delaney M; Klein MV; Houdré R; Morkoç H
    Phys Rev B Condens Matter; 1989 May; 39(14):10429. PubMed ID: 9949143
    [No Abstract]   [Full Text] [Related]  

  • 12. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.
    Hofmann F; Garg J; Maznev AA; Jandl A; Bulsara M; Fitzgerald EA; Chen G; Nelson KA
    J Phys Condens Matter; 2013 Jul; 25(29):295401. PubMed ID: 23817884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Anisotropy and infrared response of the GaAs-AlAs superlattice.
    Lou B; Sudharsanan R; Perkowitz S
    Phys Rev B Condens Matter; 1989 Jan; 39(2):1387. PubMed ID: 9948335
    [No Abstract]   [Full Text] [Related]  

  • 14. Self-consistent energy bands and formation energy of the (GaAs)1(AlAs)1(001) superlattice.
    Bylander DM; Kleinman L
    Phys Rev B Condens Matter; 1986 Oct; 34(8):5280-5286. PubMed ID: 9940358
    [No Abstract]   [Full Text] [Related]  

  • 15. Anisotropy and infrared response of the GaAs-AlAs superlattice.
    Lou B; Sudharsanan R; Perkowitz S
    Phys Rev B Condens Matter; 1988 Jul; 38(3):2212-2214. PubMed ID: 9946521
    [No Abstract]   [Full Text] [Related]  

  • 16. Energy dependence of the electron-phonon coupling in a thin-layer GaAs/AlAs superlattice.
    Gridin VV; Beserman R; Morkoç H
    Phys Rev B Condens Matter; 1988 May; 37(15):9061-9064. PubMed ID: 9944282
    [No Abstract]   [Full Text] [Related]  

  • 17. Phonon properties of GaAs/AlAs superlattice grown along the.
    Popovic ZV; Cardona M; Richter E; Strauch D; Tapfer L; Ploog K
    Phys Rev B Condens Matter; 1989 Aug; 40(5):3040-3050. PubMed ID: 9992239
    [No Abstract]   [Full Text] [Related]  

  • 18. Experimental observation of attenuated-total-reflection spectra of GaAs/AlAs superlattice.
    Haraguchi M; Fukui M; Muto S
    Phys Rev B Condens Matter; 1990 Jan; 41(2):1254-1257. PubMed ID: 9993834
    [No Abstract]   [Full Text] [Related]  

  • 19. Ab initio (GaAs)3(AlAs)3 (001) superlattice calculations: Band offsets and formation enthalpy.
    Bylander DM; Kleinman L
    Phys Rev B Condens Matter; 1987 Aug; 36(6):3229-3236. PubMed ID: 9943232
    [No Abstract]   [Full Text] [Related]  

  • 20. Temperature dependence of the direct energy gap in a GaAs/AlAs superlattice.
    Humlek J; Luke F; Ploog K
    Phys Rev B Condens Matter; 1990 Aug; 42(5):2932-2936. PubMed ID: 9995784
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.