These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9939649)

  • 1. Ambipolar drift-length measurement in amorphous hydrogenated silicon using the steady-state photocarrier grating technique.
    Ritter D; Weiser K
    Phys Rev B Condens Matter; 1986 Dec; 34(12):9031-9033. PubMed ID: 9939649
    [No Abstract]   [Full Text] [Related]  

  • 2. The chopped moving photocarrier grating technique.
    Kopprio L; Ventosinos F; Schmidt J
    Rev Sci Instrum; 2019 Dec; 90(12):123902. PubMed ID: 31893801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambipolar transport in amorphous semiconductors in the lifetime and relaxation-time regimes investigated by the steady-state photocarrier grating technique.
    Ritter D; Zeldov E; Weiser K
    Phys Rev B Condens Matter; 1988 Oct; 38(12):8296-8304. PubMed ID: 9945584
    [No Abstract]   [Full Text] [Related]  

  • 4. Theory of the steady-state-photocarrier-grating technique for obtaining accurate diffusion-length measurements in amorphous silicon.
    Hattori K; Okamoto H; Hamakawa Y
    Phys Rev B Condens Matter; 1992 Jan; 45(3):1126-1138. PubMed ID: 10001586
    [No Abstract]   [Full Text] [Related]  

  • 5. Nonlinear photocarrier drift in hydrogenated amorphous silicon-germanium alloys.
    Antoniadis H; Schiff EA
    Phys Rev B Condens Matter; 1991 Jun; 43(17):13957-13966. PubMed ID: 9997263
    [No Abstract]   [Full Text] [Related]  

  • 6. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.
    Zhang Y; Melnikov A; Mandelis A; Halliop B; Kherani NP; Zhu R
    Rev Sci Instrum; 2015 Mar; 86(3):033901. PubMed ID: 25832239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocarrier dynamics in compensated hydrogenated amorphous silicon.
    Thomsen C; Stoddart H; Zhou T; Tauc J; Vardeny Z
    Phys Rev B Condens Matter; 1986 Mar; 33(6):4396-4398. PubMed ID: 9938893
    [No Abstract]   [Full Text] [Related]  

  • 8. An automated steady state photocarrier grating experiment.
    Longeaud C
    Rev Sci Instrum; 2013 May; 84(5):055101. PubMed ID: 23742583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All Dielectric Transmissive Structural Multicolor Pixel Incorporating a Resonant Grating in Hydrogenated Amorphous Silicon.
    Koirala I; Shrestha VR; Park CS; Gao S; Lee SS; Choi DY
    Sci Rep; 2017 Oct; 7(1):13574. PubMed ID: 29051592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-transport parameters and tail-state distribution in hydrogenated amorphous silicon obtained from position and tail-state matrix simulation of drift experiments.
    Vanderhaghen R
    Phys Rev B Condens Matter; 1988 Nov; 38(15):10755-10775. PubMed ID: 9945932
    [No Abstract]   [Full Text] [Related]  

  • 11. Trapping effects in a-Si:H investigated by small-signal transient photoconductivity and the steady-state photocarrier-grating technique.
    Haridim M; Zelikson M; Weiser K
    Phys Rev B Condens Matter; 1994 May; 49(19):13394-13399. PubMed ID: 10010274
    [No Abstract]   [Full Text] [Related]  

  • 12. Thermal relaxation of the deposition-induced nonequilibrium state and steady-state defect density in hydrogenated amorphous silicon.
    Yoon JH; Lee YZ; Park HR
    Phys Rev B Condens Matter; 1994 Apr; 49(15):10303-10306. PubMed ID: 10009850
    [No Abstract]   [Full Text] [Related]  

  • 13. Surface quenching of optically generated carriers in thin-film hydrogenated amorphous silicon: Picosecond transient-grating experiments.
    Newell VJ; Rose TS; Fayer MD
    Phys Rev B Condens Matter; 1985 Dec; 32(12):8035-8040. PubMed ID: 9936978
    [No Abstract]   [Full Text] [Related]  

  • 14. Isotropy of drift mobilities in hydrogenated amorphous silicon.
    Antoniadis H; Schiff EA
    Phys Rev B Condens Matter; 1991 Aug; 44(8):3627-3637. PubMed ID: 9999990
    [No Abstract]   [Full Text] [Related]  

  • 15. High-field electron-drift measurements and the mobility edge in hydrogenated amorphous silicon.
    Gu Q; Schiff EA; Chévrier JB; Equer B
    Phys Rev B Condens Matter; 1995 Aug; 52(8):5695-5707. PubMed ID: 9981756
    [No Abstract]   [Full Text] [Related]  

  • 16. Anisotropic drift mobility in hydrogenated amorphous silicon.
    Parker MA; Schiff EA
    Phys Rev B Condens Matter; 1988 Jun; 37(17):10426-10428. PubMed ID: 9944493
    [No Abstract]   [Full Text] [Related]  

  • 17. Electron-drift-mobility measurements and exponential conduction-band tails in hydrogenated amorphous silicon-germanium alloys.
    Wang Q; Antoniadis H; Schiff EA; Guha S
    Phys Rev B Condens Matter; 1993 Apr; 47(15):9435-9448. PubMed ID: 10005010
    [No Abstract]   [Full Text] [Related]  

  • 18. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating.
    Solano M; Faryad M; Hall AS; Mallouk TE; Monk PB; Lakhtakia A
    Appl Opt; 2013 Feb; 52(5):966-79. PubMed ID: 23400058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phototransport under the presence of a small steady-state photocarrier grating.
    Li YM
    Phys Rev B Condens Matter; 1990 Nov; 42(14):9025-9032. PubMed ID: 9995116
    [No Abstract]   [Full Text] [Related]  

  • 20. Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers.
    Mehta P; Healy N; Baril NF; Sazio PJ; Badding JV; Peacock AC
    Opt Express; 2010 Aug; 18(16):16826-31. PubMed ID: 20721074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.