These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 9939933)
21. Electronic band structure of AlxGa1-xAs/AlyGa1-yAs/GaAs double-barrier superlattices. Osotchan T; Chin VW; Vaughan MR; Tansley TL; Goldys EM Phys Rev B Condens Matter; 1994 Jul; 50(4):2409-2419. PubMed ID: 9976460 [No Abstract] [Full Text] [Related]
22. Localized and extended states in GaAs/AlxGa1-xAs superlattices probed by resonant optical excitation. Tuncel E; Pavesi L; Martin D; Reinhart FK Phys Rev B Condens Matter; 1988 Jul; 38(2):1597-1600. PubMed ID: 9946438 [No Abstract] [Full Text] [Related]
23. Influence of indirect minima on electron concentration in GaAs-AlxGa1-xAs superlattices: A numerical study. Ikonic Z; Milanovic V; Tjapkin D Phys Rev B Condens Matter; 1985 Dec; 32(12):8197-8202. PubMed ID: 9936999 [No Abstract] [Full Text] [Related]
24. Resonance Raman scattering in GaAs-AlxGa1-xAs superlattices: Impurity-induced Fröhlich-interaction scattering. Kauschke W; Sood AK; Cardona M; Ploog K Phys Rev B Condens Matter; 1987 Jul; 36(3):1612-1619. PubMed ID: 9942994 [No Abstract] [Full Text] [Related]
25. Effective bond-orbital model for shallow acceptors in GaAs-AlxGa1-xAs quantum wells and superlattices. Einevoll GT; Chang YC Phys Rev B Condens Matter; 1990 Jan; 41(3):1447-1460. PubMed ID: 9993862 [No Abstract] [Full Text] [Related]
26. Hot-phonon generation in GaAs/AlxGa1-xAs superlattices: Observations and implications on the coherence length of LO phonons. Kim DS; Bouchalkha A; Jacob JM; Song JJ; Klem JF; Hou H; Tu CW; Morkoç H Phys Rev B Condens Matter; 1995 Feb; 51(8):5449-5452. PubMed ID: 9979429 [No Abstract] [Full Text] [Related]
27. Barrier-width dependence of optical transitions involving unconfined energy states in GaAs-AlxGa1-xAs superlattices. Song JJ; Yoon YS; Fedotowsky A; Kim YB; Schulman JN; Tu CW; Huang D; Morkoc H Phys Rev B Condens Matter; 1986 Dec; 34(12):8958-8962. PubMed ID: 9939628 [No Abstract] [Full Text] [Related]
28. Confined-to-propagating transition of LO phonons in GaAs/AlxGa1-xAs superlattices observed by picosecond Raman scattering. Kim DS; Bouchalkha A; Jacob JM; Zhou JF; Song JJ; Klem JF Phys Rev Lett; 1992 Feb; 68(7):1002-1005. PubMed ID: 10046053 [No Abstract] [Full Text] [Related]
29. Improved assessment of structural properties of AlxGa1-xAs/GaAs heterostructures and superlattices by double-crystal x-ray diffraction. Tapfer L; Ploog K Phys Rev B Condens Matter; 1986 Apr; 33(8):5565-5574. PubMed ID: 9939064 [No Abstract] [Full Text] [Related]
30. Second-harmonic generation in p-type asymmetric GaAs-AlxGa1-xAs-AlAs superlattices due to excitations between valence minibands. Shaw MJ; Jaros M; Xu Z; Fauchet PM; Rella CW; Richman BA; Schwettman HA; Wicks GW Phys Rev B Condens Matter; 1994 Dec; 50(24):18395-18419. PubMed ID: 9976277 [No Abstract] [Full Text] [Related]
31. Exciton dimensionality and confinement studied by resonant Raman scattering in GaAs/AlxGa1-xAs Bragg-confining structures and superlattices. Zahler M; Cohen E; Salzman J; Linder E; Maayan E; Pfeiffer LN Phys Rev B Condens Matter; 1994 Aug; 50(8):5305-5315. PubMed ID: 9976871 [No Abstract] [Full Text] [Related]
32. Comment on "Confined-to-propagating transition of LO phonons in GaAs/AlxGa1-xAs superlattices observed by picosecond Raman scattering". Spencer G; Menéndez J Phys Rev Lett; 1994 Mar; 72(10):1571. PubMed ID: 10055644 [No Abstract] [Full Text] [Related]
33. Effects of alloying and hydrostatic pressure on electronic and optical properties of GaAs-AlxGa1-xAs superlattices and multiple-quantum-well structures. Gell MA; Ninno D; Jaros M; Wolford DJ; Keuch TF; Bradley JA Phys Rev B Condens Matter; 1987 Jan; 35(3):1196-1222. PubMed ID: 9941527 [No Abstract] [Full Text] [Related]
34. Temperature dependence of photoemission characteristics from Al Wang K; Wang G; Chang B; Tran H; Fu R Appl Opt; 2017 Jul; 56(21):6015-6021. PubMed ID: 29047924 [TBL] [Abstract][Full Text] [Related]
35. Effect of graded bandgap structure on photoelectric performance of transmission-mode Al Feng C; Zhang Y; Liu J; Qian Y; Liu X; Shi F; Cheng H Appl Opt; 2017 Nov; 56(32):9044-9049. PubMed ID: 29131191 [TBL] [Abstract][Full Text] [Related]
36. Observation of GaAs--AlxGa1--xAs heterostructures and quantum-well-wire structures using backscattered electron image. Hirayama Y; Okamoto H J Electron Microsc Tech; 1989 May; 12(1):60-4. PubMed ID: 2754502 [TBL] [Abstract][Full Text] [Related]
37. Spectroscopy of the optical vibrational modes in GaAs/AlxGa1-xAs heterostructures with monolayer-wide AlxGa1-xAs barriers. Pusep YA; da Silva SW ; Galzerani JC; Milekhin AG; Preobrazhenskii VV; Semyagin BR; Marahovka II Phys Rev B Condens Matter; 1995 Jul; 52(4):2610-2618. PubMed ID: 9981328 [No Abstract] [Full Text] [Related]
38. Electron mobilities in modulation-doped AlxGa1-xAs/GaAs and pseudomorphic AlxGa1-xAs/InyGa1-yAs quantum-well structures. Inoue K; Matsuno T Phys Rev B Condens Matter; 1993 Feb; 47(7):3771-3778. PubMed ID: 10006481 [No Abstract] [Full Text] [Related]
39. Picosecond Raman studies of the optical phonons in the AlxGa1-xAs layers of GaAs-AlxGa1-xAs multiple-quantum-well structures. Tsen KT; Morkoç H Phys Rev B Condens Matter; 1988 Apr; 37(12):7137-7139. PubMed ID: 9943996 [No Abstract] [Full Text] [Related]
40. Effect of a magnetic field on the photoluminescence from InxGa1-xAs/GaAs and GaAs/AlxGa1-xAs quantum wells. Reynolds DC; Evans KR; Stutz CE; Yu PW Phys Rev B Condens Matter; 1991 Feb; 43(5):4244-4248. PubMed ID: 9997775 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]