These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 994)

  • 21. Conformation of the phosphate D-alanine zwitterion in bacterial teichoic acid from nuclear magnetic resonance spectroscopy.
    Garimella R; Halye JL; Harrison W; Klebba PE; Rice CV
    Biochemistry; 2009 Oct; 48(39):9242-9. PubMed ID: 19746945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus.
    Koch HU; Döker R; Fischer W
    J Bacteriol; 1985 Dec; 164(3):1211-7. PubMed ID: 4066613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyelectrolyte nature of bacterial teichoic acids.
    Doyle RJ; McDannel ML; Streips UN; Birdsell DC; Young FE
    J Bacteriol; 1974 May; 118(2):606-15. PubMed ID: 4208136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids.
    Antikainen J; Kuparinen V; Lähteenmäki K; Korhonen TK
    J Bacteriol; 2007 Jun; 189(12):4539-43. PubMed ID: 17449624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competitive binding of calcium and magnesium to streptococcal lipoteichoic acid.
    Rose RK; Hogg SD
    Biochim Biophys Acta; 1995 Aug; 1245(1):94-8. PubMed ID: 7654772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+ and phosphate releases from calcified Chara cell walls in concentrated KCl solution.
    Kiyosawa K
    J Exp Bot; 2001 Feb; 52(355):223-9. PubMed ID: 11283166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cation exchange in cell walls of gram-positive bacteria.
    Marquis RE; Mayzel K; Carstensen EL
    Can J Microbiol; 1976 Jul; 22(7):975-82. PubMed ID: 822931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth.
    Bautista-Gallego J; Arroyo-López FN; Durán-Quintana MC; Garrido-Fernandez A
    J Food Prot; 2008 Jul; 71(7):1412-21. PubMed ID: 18680941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantitative study of calcium binding by isolated streptococcal cell walls and lipoteichoic acid: comparison with whole cells.
    Rose RK; Hogg SD; Shellis RP
    J Dent Res; 1994 Nov; 73(11):1742-7. PubMed ID: 7983261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of a D-optimal mixture design to estimate the effects of diverse chloride salts on the growth parameters of Lactobacillus pentosus.
    Arroyo-López FN; Bautista-Gallego J; Chiesa A; Durán-Quintana MC; Garrido-Fernández A
    Food Microbiol; 2009 Jun; 26(4):396-403. PubMed ID: 19376461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of porin from Yersinia pseudotuberculosis with lipopolysaccharides. Effect of ionic strength, pH, and divalent cations on the binding parameters.
    Naberezhnykh GA; Kim NY; Glazunov VP; Bakholdina SI; Krasikova IN; Khomenko VA; Solov'eva TF
    Biochemistry (Mosc); 2000 Apr; 65(4):485-93. PubMed ID: 10810188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of an adenosine 3':5'-cyclic monophosphate phosphodiesterase from baker's yeast. Its binding to subcellular particles, catalytic properties and gel-filtration behaviour.
    Londesborough J
    Biochem J; 1977 Jun; 163(3):467-76. PubMed ID: 18135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of a D-optimal design with constrains to quantify the effects of the mixture of sodium, potassium, calcium and magnesium chloride salts on the growth parameters of Saccharomyces cerevisiae.
    Bautista-Gallego J; Arroyo-López FN; Chiesa A; Durán-Quintana MC; Garrido-Fernández A
    J Ind Microbiol Biotechnol; 2008 Aug; 35(8):889-900. PubMed ID: 18465155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salt-induced contraction of bacterial cell walls.
    Marquis RE
    J Bacteriol; 1968 Mar; 95(3):775-81. PubMed ID: 4966824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of nucleoside diphosphate kinase with membranes of bleached bovine retinal rod outer segments. Effects of pH, salts, and guanine nucleotides.
    Orlov NY; Kimura N
    Biochemistry (Mosc); 1998 Feb; 63(2):171-9. PubMed ID: 9526110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.
    Gandhi A; Shah NP
    J Food Sci; 2016 Apr; 81(4):H991-H1000. PubMed ID: 26919457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of growth condition on the concentration of potassium in Bacillus subtilis var. niger and its possible relationship to cellular ribonucleic acid, teichoic acid and teichuronic acid.
    Tempest DW; Dicks JW; Ellwood DC
    Biochem J; 1968 Jan; 106(1):237-43. PubMed ID: 4976492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between prolactin and rabbit mammary prolactin receptor in the presence of environment-modifying agents.
    Sakai S; Suzuki M
    Endocrinol Jpn; 1989 Oct; 36(5):721-6. PubMed ID: 2620666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid.
    Bhavsar AP; Erdman LK; Schertzer JW; Brown ED
    J Bacteriol; 2004 Dec; 186(23):7865-73. PubMed ID: 15547257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.