These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9940230)

  • 41. XAFS studies of interfaces in MnSe/ZnTe superlattices.
    Kropf AJ; Bunker BA; Furdyna JK
    J Synchrotron Radiat; 1999 May; 6(Pt 3):370-2. PubMed ID: 15263311
    [No Abstract]   [Full Text] [Related]  

  • 42. Interface vibrational mode in CdSe/ZnTe superlattices.
    Jin Y; Hou YT; Zhang SL; Li J; Yuan SX; Qin GG
    Phys Rev B Condens Matter; 1992 May; 45(20):12141-12143. PubMed ID: 10001245
    [No Abstract]   [Full Text] [Related]  

  • 43. Optical properties and band alignments in ZnTe nanoparticles/MoS
    Sharma I; Mehta BR
    Nanotechnology; 2017 Nov; 28(44):445701. PubMed ID: 28832018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extended x-ray-absorption fine-structure studies of interfaces in ZnTe/CdSe superlattices.
    Kemner KM; Bunker BA; Luo H; Samarth N; Furdyna JK; Weidmann MR; Newman KE
    Phys Rev B Condens Matter; 1992 Sep; 46(11):7272-7275. PubMed ID: 10002451
    [No Abstract]   [Full Text] [Related]  

  • 45. Non-Poissonian formation of multiple excitons in photoexcited CdTe colloidal quantum qots by femtosecond nonresonant two-photon absorption.
    Gandman A; Bronstein-Tojen M; Kloper V; Muallem M; Yanover D; Lifshitz E; Amitay Z
    Opt Express; 2013 Oct; 21(20):24300-8. PubMed ID: 24104339
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tight-binding study of ZnSe/ZnTe strained superlattices: Determination of the band offset from the optical properties.
    Malonga F; Bertho D; Jouanin C; Jancu J
    Phys Rev B Condens Matter; 1995 Aug; 52(7):5124-5131. PubMed ID: 9981695
    [No Abstract]   [Full Text] [Related]  

  • 47. Defect Proliferation at the Quasicondensate Crossover of Two-Dimensional Dipolar Excitons Trapped in Coupled GaAs Quantum Wells.
    Dang S; Anankine R; Gomez C; Lemaître A; Holzmann M; Dubin F
    Phys Rev Lett; 2019 Mar; 122(11):117402. PubMed ID: 30951355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Linear-chain-model interpretation of Raman scattering from ZnSe/ZnTe superlattices and ZnSexTe1-x mixed crystals.
    Farrow LA; Worlock JM; Turco-Sandroff F; Nahory RE; Beserman R; Hwang DM
    Phys Rev B Condens Matter; 1992 Jan; 45(3):1231-1235. PubMed ID: 10001598
    [No Abstract]   [Full Text] [Related]  

  • 49. Two-photon magnetoabsorption of ZnTe, CdTe, and GaAs.
    Neumann C; Nöthe A; Lipari NO
    Phys Rev B Condens Matter; 1988 Jan; 37(2):922-932. PubMed ID: 9944588
    [No Abstract]   [Full Text] [Related]  

  • 50. Highly mobile charge-transfer excitons in two-dimensional WS
    Zhu T; Yuan L; Zhao Y; Zhou M; Wan Y; Mei J; Huang L
    Sci Adv; 2018 Jan; 4(1):eaao3104. PubMed ID: 29340303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Magneto-optical studies of the type-I/type-II crossover and band offset in ZnTe/Zn1-xMnxTe superlattices in magnetic fields up to 45 T.
    Cheng HH; Nicholas RJ; Lawless MJ; Ashenford DE; Lunn B
    Phys Rev B Condens Matter; 1995 Aug; 52(7):5269-5274. PubMed ID: 9981713
    [No Abstract]   [Full Text] [Related]  

  • 52. Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well.
    Moody G; Akimov IA; Li H; Singh R; Yakovlev DR; Karczewski G; Wiater M; Wojtowicz T; Bayer M; Cundiff ST
    Phys Rev Lett; 2014 Mar; 112(9):097401. PubMed ID: 24655274
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards Bose-Einstein condensation of excitons in potential traps.
    Butov LV; Lai CW; Ivanov AL; Gossard AC; Chemla DS
    Nature; 2002 May; 417(6884):47-52. PubMed ID: 11986661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonadiabatic phonon coupling for bound excitons in ZnTe.
    Holtz PO; Monemar B
    Phys Rev B Condens Matter; 1986 Jan; 33(2):1085-1091. PubMed ID: 9938373
    [No Abstract]   [Full Text] [Related]  

  • 55. Aharonov-Bohm excitons at elevated temperatures in type-II ZnTe/ZnSe quantum dots.
    Sellers IR; Whiteside VR; Kuskovsky IL; Govorov AO; McCombe BD
    Phys Rev Lett; 2008 Apr; 100(13):136405. PubMed ID: 18517978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Femtosecond dynamics of resonantly excited room-temperature excitons in II-VI CdZnTe/ZnTe quantum wells.
    Becker PC; Lee D; Johnson AM; Prosser AG; Feldman RD; Austin RF; Behringer RE
    Phys Rev Lett; 1992 Mar; 68(12):1876-1879. PubMed ID: 10045243
    [No Abstract]   [Full Text] [Related]  

  • 57. Electronic structure of ZnTe and CdTe under pressure.
    Christensen NE; Christensen OB
    Phys Rev B Condens Matter; 1986 Apr; 33(7):4739-4746. PubMed ID: 9938937
    [No Abstract]   [Full Text] [Related]  

  • 58. First-principles study of DX centers in CdTe, ZnTe, and CdxZn1-xTe alloys.
    Park CH; Chadi DJ
    Phys Rev B Condens Matter; 1995 Oct; 52(16):11884-11890. PubMed ID: 9980325
    [No Abstract]   [Full Text] [Related]  

  • 59. Exciton localization by a fractional monolayer of ZnTe inserted in a wide CdTe quantum well.
    Zhao QX; Magnea N; Pautrat JL
    Phys Rev B Condens Matter; 1995 Dec; 52(23):16612-16617. PubMed ID: 9981062
    [No Abstract]   [Full Text] [Related]  

  • 60. Transition behavior from coupled to uncoupled CdTe/ZnTe asymmetric double quantum wells.
    Kim TW; Jung M; Park HL; Lee SD
    Phys Rev B Condens Matter; 1995 Jul; 52(3):1467-1469. PubMed ID: 9981196
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.